MathProblemsBank Math Problems Bank
  • Home
  • Forum
  • About Us
  • Contact Us
  • Login
  • Register
  • language
 MathProblemsBank banner

MathProblemsBank banner

Math Problems and solutions

Mathematics sections
  • Algebra
    • Vector Algebra
    • Determinant calculation
    • Permutation group
    • Matrix transformations
    • Linear transformations
    • Quadratic forms
    • Fields, Groups, Rings
    • Systems of algebraic equations
    • Linear spaces
    • Polynomials
    • Tensor calculus
    • Vector analysis
  • Analytic geometry
    • Curves of the 2-nd order
    • Surfaces of the 2-nd order
    • Lines on a plane
    • Line and plane in space
    • Tangents and normals
  • Complex analysis
    • Operations with complex numbers
    • Singular points and residues
    • Integral of a complex variable
    • Laplace transform
    • Conformal mappings
    • Analytic functions
    • Series with complex terms
    • Calculating integrals of a real variable using residues
  • Differential equations
    • Ordinary differential equations
      • First order differential equations
      • Second order differential equations
      • Higher order differential equations
      • Geometric and physical applications
    • Systems of ordinary differential equations
    • Stability
      • Stability of the equations
      • Stability of the systems of equations
    • Operating method
      • Differential equations
      • Systems of differential equations
  • Differential geometry
  • Discret mathematics
    • Boolean algebra
    • Set theory
    • Combinatorics
    • Graph theory
    • Binary relations
    • Propositional algebra
      • Propositional calculus
      • Sequent calculus
    • Predicate calculus
    • Theory of algorithms and formal languages
    • Automata theory
    • Recursive functions
  • Functional analysis
    • Metric spaces
      • Properties of metric spaces
      • Orthogonal systems
      • Convergence in metric spaces
    • Normed spaces
      • Properties of normed spaces
      • Convergence in normed spaces
    • Measure theory
      • Lebesgue measure and integration
      • Measurable functions and sets
      • Convergence (in measure, almost everywhere)
    • Compactness
    • Linear operators
    • Integral equations
    • Properties of sets
    • Generalized derivatives
    • Riemann-Stieltjes integral
  • Geometry
    • Planimetry
      • Transformations on the plane
      • Construction problems
      • Complex numbers in geometry
      • Various problems on the plane
      • Locus of points
    • Stereometry
      • Construction of sections
      • Various problems in the space
    • Affine transformations
  • Mathematical analysis
    • Gradient and directional derivative
    • Graphing functions using derivatives
    • Plotting functions
    • Fourier series
      • Trigonometric Fourier series
      • Fourier integral
    • Number series
    • Function extrema
    • Power series
    • Function properties
    • Derivatives and differentials
    • Functional sequences and series
    • Calculation of limits
    • Asymptotic analysis
  • Mathematical methods and models in economics
  • Mathematical physics
    • First order partial differential equations
    • Second order partial differential equations
      • d'Alembert method
      • Fourier method
      • With constant coefficients
      • With variable coefficients
      • Mixed problems
    • Convolution of functions
    • Nonlinear equations
    • Sturm-Liouville problem
    • Systems of equations in partial derivatives of the first order
  • Mathematical statistics
  • Numerical methods
    • Golden section search method
    • Least square method
    • Sweep method
    • Simple-Iteration method
    • Approximate calculation of integrals
    • Approximate solution of differential equations
    • Approximate numbers
    • Function Interpolation
    • Approximate solution of algebraic equations
  • Olympiad problems
    • Olympic geometry
    • Number theory
    • Olympic algebra
    • Various Olympiad problems
    • Inequalities
      • Algebraic
      • Geometric
    • Higher mathematics
  • Probability theory
    • One dimensional random variables and their characteristics
    • Theory of random processes
    • Markov chains
    • Queuing systems
    • Two-dimensional random variables and their characteristics
    • Definition and properties of probability
    • Limit theorems
  • Real integrals
    • Integrals of functions of a single variable
      • Indefinite integrals
      • Definite Integrals
      • Improper integrals
    • Double integrals
    • Triple integrals
    • The area of a region
    • Volume of a solid
    • Volume of a solid of revolution
    • Flux of the vector field
    • Surface integrals
    • Curvilinear integrals
    • Potential and solenoidal fields
    • Vector field circulation
    • Integrals depending on a parameter
  • Topology
  • USE problems
  • Variational calculus
Problem list Free problems

Attention! If a subsection is selected, then the search will be performed in it!

Problem: Calculate for all \( n \) the determinant of the matrix \( A=\left(a_{j k}\right) \quad \) of the order \( n \), where \( a_{j k}=2 j k^{2}-k j^{2}-1 \).

1.2.3 Determinant calculation

5.1 $

Problem: Calculate the determinant of a matrix of size \[ \times n\left(\begin{array}{cccccc} 1 & 0 & \ldots & \ldots & 0 & 2 \\ 0 & 1 & \ldots & \ldots & 2 & 0 \\ \ldots & \ldots & \ldots & \ldots & \ldots & \ldots \\ 0 & 2 & \ldots & \ldots & 1 & 0 \\ 2 & 0 & \ldots & \ldots & 0 & 1 \end{array}\right) . \]

1.2.4 Determinant calculation

3.82 $

Problem: Calculate the determinant of a matrix of size \[ \times n\left(\begin{array}{ccccc} 2 & 1 & \ldots & \ldots & 1 \\ 1 & 2 & \ldots & \ldots & 1 \\ \ldots & \ldots & \ldots & \ldots & \ldots \\ \ldots & \ldots & \ldots & \ldots & \ldots \\ 1 & 1 & \ldots & \ldots & 2 \end{array}\right) \text {. } \]

1.2.5 Determinant calculation

2.55 $

Problem: Calculate the determinant of the \( n \)-th order \[ \Delta=\left|\begin{array}{cccccc} 0 & a_{2} & a_{3} & \ldots & a_{n-1} & a_{n} \\ b_{1} & 0 & a_{3} & \ldots & a_{n-1} & a_{n} \\ b_{1} & b_{2} & 0 & \ldots & a_{n-1} & a_{n} \\ \ldots & \ldots & \ldots & \ldots & \ldots & \ldots \\ b_{1} & b_{2} & b_{3} & \ldots & 0 & a_{n} \\ b_{1} & b_{2} & \ldots & \ldots & b_{n-1} & 0 \end{array}\right| . \]

1.2.6 Determinant calculation

5.1 $

Problem: Calculate the determinant of the \( n \)-th order \[ \Delta=\left|\begin{array}{ccccccc} 1 & 2 & 3 & \ldots & \ldots & n-1 & n \\ 1 & 3 & 3 & 4 & \ldots & n-1 & n \\ 1 & 2 & 5 & 4 & \ldots & n-1 & n \\ \ldots & \ldots & \ldots & \ldots & \ldots & \ldots & \ldots \\ 1 & 2 & 3 & \ldots & \ldots & 2 n-3 & n \\ 1 & 2 & 3 & \ldots & \ldots & n-1 & 2 n-1 \end{array}\right| . \]

1.2.7 Determinant calculation

2.55 $

Problem: Calculate the determinant of \( (n+1) \)-th order \[ \Delta=\left|\begin{array}{ccccc} x & y_{1} & y_{2} & \ldots & y_{n} \\ y_{1} & x & y_{2} & \ldots & y_{n} \\ y_{1} & y_{2} & x & \ldots & y_{n} \\ \ldots & \ldots & \ldots & \ldots & \ldots \\ y_{1} & y_{2} & y_{3} & \ldots & x \end{array}\right| \text {. } \]

1.2.8 Determinant calculation

3.82 $

Problem: Calcualte the determinant of \( n \)-th order \[ \Delta_{n}=\left|\begin{array}{cccccc} a+b & a b & 0 & \ldots & 0 & 0 \\ 2 & a+b & a b & \ldots & 0 & 0 \\ 0 & 1 & a+b & \ldots & 0 & 0 \\ \ldots & \ldots & \ldots & \ldots & \ldots & \ldots \\ 0 & 0 & \ldots & \ldots & a+b & a b \\ 0 & 0 & \ldots & \ldots & 1 & a+b \end{array}\right| . \]

1.2.9 Determinant calculation

5.1 $

Problem: Solve the equation in the permutation group \( S_{\mathcal{T}}:(1234567) \cdot X \cdot(26)=(134) \cdot(275) \). Expand the permutation into cycles and transpositions.

1.3.1 Permutation group

2.04 $

Problem: Solve the homogeneous system of equations \[ \left\{\begin{array}{l} x_{1}+2 x_{2}+x_{3}+4 x_{4}+x_{5}=0 \\ 2 x_{1}+x_{2}+3 x_{3}+x_{4}-5 x_{5}=0 . \\ x_{1}+3 x_{2}-3 x_{3}+6 x_{4}-x_{5}=0 \end{array}\right. \]

1.5.10 Systems of algebraic equations

1.02 $

Problem: Construct non-isomorphic groups with 3-element base set.

1.6.1 Fields, Groups, Rings

2.04 $

Problem: Find the matrix centralizer \( A=\left(\begin{array}{ll}3 & -4 \\ 1 & -2\end{array}\right) \) in \( G L(2, R) \), where \( G L(n, F) \) is a group of non-degenerate matrices of size \( n \times n \) over the field \( F \), with the operation of matrix multiplication.

1.6.2 Fields, Groups, Rings

3.06 $

Problem: Find out if the transformations are linear: \[ \begin{array}{l} A x=\left(3 x_{1}-2 x_{2}-x_{3}, 1, x_{1}+2 x_{2}+3\right), \\ B x=\left(3 x_{1}-2 x_{2}-x_{3}, 1, x_{1}^{3}+2 x_{2}+3 x_{3}\right), \\ C x=\left(3 x_{1}-2 x_{2}-x_{3}, x_{3}, x_{1}+2 x_{2}+3 x_{3}\right) . \end{array} \]

1.7.1 Linear transformations

1.27 $

Problem: Investigate linear dependence of the vectors \( e^{x}, e^{2 x}, e^{3 x} \) in \( (-\infty,+\infty) \).

8.1.3.28 Higher order differential equations

1.02 $

Problem: Given the coordinates of the vector \( x=\{2,5,10\} \) in the basis \( \left(e_{1}, e_{2}, e_{3}\right) \). Find its coordinates in the basis \( \left(e_{1}{ }^{\prime}, e_{2}{ }^{\prime}, e_{3}{ }^{\prime}\right) \), where \[ \left\{\begin{array}{c} e_{1}{ }^{\prime}=e_{1}+e_{2}+6 e_{3} \\ e_{2}{ }^{\prime}=\frac{6}{5} e_{1}-e_{2} \\ e_{3}{ }^{\prime}=-e_{1}+e_{2}+e_{3} \end{array} .\right. \]

1.7.3 Linear transformations

1.27 $

Problem: Complement the system of vectors \( e_{1}=\{1,2,3,4\}, \quad e_{2}=\{-1,-3,1,1\} \quad \) to the orthogonal system in \( R^{4} \).

1.7.4 Linear transformations

1.27 $

  • ‹
  • 1
  • 2
  • 3
  • 4
  • ...
  • 116
  • 117
  • ›

mathproblemsbank.net

Terms of use Privacy policy

© Copyright 2025, MathProblemsBank

Trustpilot
Order a solution
Order a solution to a problem?
Order a solution
Order a solution to a problem?
home.button.login