MathProblemsBank Math Problems Bank
  • Home
  • Forum
  • About Us
  • Contact Us
  • Login
  • Register
  • language
 MathProblemsBank banner

MathProblemsBank banner

Math Problems and solutions

Mathematics sections
  • Algebra
    • Vector Algebra
    • Determinant calculation
    • Permutation group
    • Matrix transformations
    • Linear transformations
    • Quadratic forms
    • Fields, Groups, Rings
    • Systems of algebraic equations
    • Linear spaces
    • Polynomials
    • Tensor calculus
    • Vector analysis
  • Analytic geometry
    • Curves of the 2-nd order
    • Surfaces of the 2-nd order
    • Lines on a plane
    • Line and plane in space
    • Tangents and normals
  • Complex analysis
    • Operations with complex numbers
    • Singular points and residues
    • Integral of a complex variable
    • Laplace transform
    • Conformal mappings
    • Analytic functions
    • Series with complex terms
    • Calculating integrals of a real variable using residues
  • Differential equations
    • Ordinary differential equations
      • First order differential equations
      • Second order differential equations
      • Higher order differential equations
      • Geometric and physical applications
    • Systems of ordinary differential equations
    • Stability
      • Stability of the equations
      • Stability of the systems of equations
    • Operating method
      • Differential equations
      • Systems of differential equations
  • Differential geometry
  • Discret mathematics
    • Boolean algebra
    • Set theory
    • Combinatorics
    • Graph theory
    • Binary relations
    • Propositional algebra
      • Propositional calculus
      • Sequent calculus
    • Predicate calculus
    • Theory of algorithms and formal languages
    • Automata theory
    • Recursive functions
  • Functional analysis
    • Metric spaces
      • Properties of metric spaces
      • Orthogonal systems
      • Convergence in metric spaces
    • Normed spaces
      • Properties of normed spaces
      • Convergence in normed spaces
    • Measure theory
      • Lebesgue measure and integration
      • Measurable functions and sets
      • Convergence (in measure, almost everywhere)
    • Compactness
    • Linear operators
    • Integral equations
    • Properties of sets
    • Generalized derivatives
    • Riemann-Stieltjes integral
  • Geometry
    • Planimetry
      • Transformations on the plane
      • Construction problems
      • Complex numbers in geometry
      • Various problems on the plane
      • Locus of points
    • Stereometry
      • Construction of sections
      • Various problems in the space
    • Affine transformations
  • Mathematical analysis
    • Gradient and directional derivative
    • Graphing functions using derivatives
    • Plotting functions
    • Fourier series
      • Trigonometric Fourier series
      • Fourier integral
    • Number series
    • Function extrema
    • Power series
    • Function properties
    • Derivatives and differentials
    • Functional sequences and series
    • Calculation of limits
    • Asymptotic analysis
  • Mathematical methods and models in economics
  • Mathematical physics
    • First order partial differential equations
    • Second order partial differential equations
      • d'Alembert method
      • Fourier method
      • With constant coefficients
      • With variable coefficients
      • Mixed problems
    • Convolution of functions
    • Nonlinear equations
    • Sturm-Liouville problem
    • Systems of equations in partial derivatives of the first order
  • Mathematical statistics
  • Numerical methods
    • Golden section search method
    • Least square method
    • Sweep method
    • Simple-Iteration method
    • Approximate calculation of integrals
    • Approximate solution of differential equations
    • Approximate numbers
    • Function Interpolation
    • Approximate solution of algebraic equations
  • Olympiad problems
    • Olympic geometry
    • Number theory
    • Olympic algebra
    • Various Olympiad problems
    • Inequalities
      • Algebraic
      • Geometric
    • Higher mathematics
  • Probability theory
    • One dimensional random variables and their characteristics
    • Theory of random processes
    • Markov chains
    • Queuing systems
    • Two-dimensional random variables and their characteristics
    • Definition and properties of probability
    • Limit theorems
  • Real integrals
    • Integrals of functions of a single variable
      • Indefinite integrals
      • Definite Integrals
      • Improper integrals
    • Double integrals
    • Triple integrals
    • The area of a region
    • Volume of a solid
    • Volume of a solid of revolution
    • Flux of the vector field
    • Surface integrals
    • Curvilinear integrals
    • Potential and solenoidal fields
    • Vector field circulation
    • Integrals depending on a parameter
  • Topology
  • USE problems
  • Variational calculus
Problem list Free problems

Attention! If a subsection is selected, then the search will be performed in it!

Problem: Find the image of domain \[ D=\{|z|<1\} \cup\{\operatorname{Im} z>0\} \backslash\left\{z=i t, 0

10.5.38 Conformal mappings

6.37 $

Problem: Find the image of domain \[ D=\left\{|\operatorname{Re} z|<\frac{\pi}{2}\right\} \backslash\left\{z=t, \quad t \in\left[0 ; \frac{\pi}{2}\right)\right\} \] for the mapping \( f(z)=e^{i z} \).

10.5.39 Conformal mappings

5.1 $

Problem: Find the image of domain \[ D=\left\{|\operatorname{Re} z|<\frac{\pi}{2}\right\} \cup\{\operatorname{Im} z>0\} \backslash\{z=i t, t \in(0 ; 1]\} \] for the mapping \( f(z)=\sin z \).

10.5.40 Conformal mappings

6.37 $

Problem: Find the image of domain \( D=\{0<\operatorname{Im} z<\pi\} \) for the mapping \( f(z)=\operatorname{cth} z \).

10.5.41 Conformal mappings

6.37 $

Problem: Find the image of domain \[ D=\{0<\operatorname{Re} z<\pi\} \backslash\left\{z=t, t \in\left(0 ; \frac{\pi}{2}\right)\right\} \] for the mapping \( f(z)=\operatorname{ch} i z \).

10.5.42 Conformal mappings

6.37 $

Problem: Find the image of domain \( D \) for the linear-fractional mapping \( w=f(z) \), where \[ D=\{z \in \mathbb{C}:|| z+1-i \mid>\sqrt{2}\}, \quad f(z)=\frac{z+1}{z-i} . \]

10.5.43 Conformal mappings

6.37 $

Problem: Find the image of domain \( D \) when mapped by the Joukowsky transform: \[ D:\left\{\begin{array}{c} \operatorname{Re} z>0, \quad \operatorname{Im} z>0 \\ |z|>1 \end{array}, \quad f(z)=\frac{1}{2}\left(z+\frac{1}{z}\right)\right. \text {. } \]

10.5.44 Conformal mappings

4.33 $

Problem: Find the image of line \( L \) for the mapping \( w=f(z) . L \) is the segment, connecting the points \( 1, i \), where \( w=(1+i) z+1-i \).

10.5.45 Conformal mappings

0 $

Problem: Construct a linear-fractional function that maps the points \( z_{1}, z_{2}, z_{3} \) corresponding to the points \( w_{1}, w_{2}, w_{3} \). \[ z_{1}=3, z_{2}=2, z_{3}=3 i, w_{1}=1+i, w_{2}=0, w_{3}=\infty . \]

10.5.46 Conformal mappings

2.55 $

Problem: Prove that the number \( \sqrt{3}-\sqrt{2} \) is irrational.

12.2.43 Number theory

0 $

Problem: A complex number is given: \( z=\frac{-4 \sqrt{3}-4 i}{1+i \sqrt{3}} \). 1) Write the complex number in algebraic, trigonometric and exponential forms. 2) Write the algebraic, trigonometric and exponential forms of the number \( u=z^{n} \), where \( n(-1)^{N}(N+4), N=25 \). 3) Write the exponential and trigonometric forms of the roots \( W_{k}=\sqrt[3]{z}, k=0,1,2 \). 4) Draw \( z \) and \( W_{0}, W_{1}, W_{2} \) on the same complex plane.

10.3.10 Operations with complex numbers

3.82 $

Problem: Find the gradient of the scalar field \( U(x, y, z)= \) \( \arctan \left(\frac{z}{y+z}\right) \) at an arbitrary point and at the point \( M_{0}=(1,1,0) \). For the resulting vector field \( \bar{a}= \) \( \nabla U(x, y, z) \) find \( \operatorname{div} \bar{a} \) and \( \operatorname{rot} \bar{a} \) at the point \( M_{0} \).

1.12.2 Vector analysis

3.82 $

Problem: Find the general solution of the equation, bringing it to canonical form. \[ u_{x x}+2 u_{x y}+u_{y y}-7 u_{x}-3 u_{y}=0 \]

11.5.4.3 With constant coefficients

5.1 $

Problem: Find all values of the parameter \( a \), for which the minimum value of the function \( f(x)=4 x^{2}-4 a x+a^{2}-2 a++2 \) on the segment \( x \in[0 ; 2] \) is equal to 3 .

17.20 USE problems

0 $

Problem: Find all the values of the parameter for which the roots of the equation \( (1+k) x^{2}-3 k x+4 k=0 \) belong to the segment \( [0 ; 5] \) ?

17.3 USE problems

3.31 $

  • ‹
  • 1
  • 2
  • ...
  • 114
  • 115
  • 116
  • 117
  • ›

mathproblemsbank.net

Terms of use Privacy policy

© Copyright 2025, MathProblemsBank

Trustpilot
Order a solution
Order a solution to a problem?
Order a solution
Order a solution to a problem?
home.button.login