MathProblemsBank Math Problems Bank
  • Home
  • Forum
  • About Us
  • Contact Us
  • Login
  • Register
  • language
 MathProblemsBank banner

MathProblemsBank banner

Math Problems and solutions

Mathematics sections
  • Algebra
    • Vector Algebra
    • Determinant calculation
    • Permutation group
    • Matrix transformations
    • Linear transformations
    • Quadratic forms
    • Fields, Groups, Rings
    • Systems of algebraic equations
    • Linear spaces
    • Polynomials
    • Tensor calculus
    • Vector analysis
  • Analytic geometry
    • Curves of the 2-nd order
    • Surfaces of the 2-nd order
    • Lines on a plane
    • Line and plane in space
    • Tangents and normals
  • Complex analysis
    • Operations with complex numbers
    • Singular points and residues
    • Integral of a complex variable
    • Laplace transform
    • Conformal mappings
    • Analytic functions
    • Series with complex terms
    • Calculating integrals of a real variable using residues
  • Differential equations
    • Ordinary differential equations
      • First order differential equations
      • Second order differential equations
      • Higher order differential equations
      • Geometric and physical applications
    • Systems of ordinary differential equations
    • Stability
      • Stability of the equations
      • Stability of the systems of equations
    • Operating method
      • Differential equations
      • Systems of differential equations
  • Differential geometry
  • Discret mathematics
    • Boolean algebra
    • Set theory
    • Combinatorics
    • Graph theory
    • Binary relations
    • Propositional algebra
      • Propositional calculus
      • Sequent calculus
    • Predicate calculus
    • Theory of algorithms and formal languages
    • Automata theory
    • Recursive functions
  • Functional analysis
    • Metric spaces
      • Properties of metric spaces
      • Orthogonal systems
      • Convergence in metric spaces
    • Normed spaces
      • Properties of normed spaces
      • Convergence in normed spaces
    • Measure theory
      • Lebesgue measure and integration
      • Measurable functions and sets
      • Convergence (in measure, almost everywhere)
    • Compactness
    • Linear operators
    • Integral equations
    • Properties of sets
    • Generalized derivatives
    • Riemann-Stieltjes integral
  • Geometry
    • Planimetry
      • Transformations on the plane
      • Construction problems
      • Complex numbers in geometry
      • Various problems on the plane
      • Locus of points
    • Stereometry
      • Construction of sections
      • Various problems in the space
    • Affine transformations
  • Mathematical analysis
    • Gradient and directional derivative
    • Graphing functions using derivatives
    • Plotting functions
    • Fourier series
      • Trigonometric Fourier series
      • Fourier integral
    • Number series
    • Function extrema
    • Power series
    • Function properties
    • Derivatives and differentials
    • Functional sequences and series
    • Calculation of limits
    • Asymptotic analysis
  • Mathematical methods and models in economics
  • Mathematical physics
    • First order partial differential equations
    • Second order partial differential equations
      • d'Alembert method
      • Fourier method
      • With constant coefficients
      • With variable coefficients
      • Mixed problems
    • Convolution of functions
    • Nonlinear equations
    • Sturm-Liouville problem
    • Systems of equations in partial derivatives of the first order
  • Mathematical statistics
  • Numerical methods
    • Golden section search method
    • Least square method
    • Sweep method
    • Simple-Iteration method
    • Approximate calculation of integrals
    • Approximate solution of differential equations
    • Approximate numbers
    • Function Interpolation
    • Approximate solution of algebraic equations
  • Olympiad problems
    • Olympic geometry
    • Number theory
    • Olympic algebra
    • Various Olympiad problems
    • Inequalities
      • Algebraic
      • Geometric
    • Higher mathematics
  • Probability theory
    • One dimensional random variables and their characteristics
    • Theory of random processes
    • Markov chains
    • Queuing systems
    • Two-dimensional random variables and their characteristics
    • Definition and properties of probability
    • Limit theorems
  • Real integrals
    • Integrals of functions of a single variable
      • Indefinite integrals
      • Definite Integrals
      • Improper integrals
    • Double integrals
    • Triple integrals
    • The area of a region
    • Volume of a solid
    • Volume of a solid of revolution
    • Flux of the vector field
    • Surface integrals
    • Curvilinear integrals
    • Potential and solenoidal fields
    • Vector field circulation
    • Integrals depending on a parameter
  • Topology
  • USE problems
  • Variational calculus
Problem list Free problems

Attention! If a subsection is selected, then the search will be performed in it!

Problem: Given the matrix of the operator \( A=\left(\begin{array}{lll}2 & 1 & 2 \\ 3 & 0 & 2 \\ 1 & 0 & 1\end{array}\right) \) in basis \( \left(e_{1}, e_{2}, e_{3}\right) \). Find its matrix in basis \( \left(e_{1}^{\prime}, e_{2}^{\prime}, e_{3}{ }^{\prime}\right) \), where \( \left\{\begin{array}{c}e_{1}{ }^{\prime}=e_{1}-e_{2}+e_{3} \\ e_{2}{ }^{\prime}=-e_{1}+e_{2}-2 e_{3} \\ e_{3}{ }^{\prime}=-e_{1}+2 e_{2}+e_{3}\end{array}\right. \).

1.7.5 Linear transformations

1.78 $

Problem: Given the operators \( A x=\left\{x_{2}-x_{3}, x_{1}, x_{1}+x_{3}\right\} \), \( B x=\left\{x_{2}, 2 x_{3}, x_{1}\right\} \). Find the operator \( \left(B^{2}-2 A\right) \).

1.7.6 Linear transformations

1.02 $

Problem: Investigate the quadratic form for signdefiniteness, bring it to the canonical form by orthogonal transformation and write down the transition matrix. \[ \begin{array}{l} f\left(x_{1}, x_{2} x_{3}\right)=3 x_{1}{ }^{2}+x_{2}{ }^{2}-\frac{3}{2} x_{3}{ }^{2}+2 \sqrt{3} x_{1} x_{2}- \\ -x_{1} x_{3}+\sqrt{3} x_{2} x_{3} . \end{array} \]

1.8.1 Quadratic forms

3.82 $

Problem: Compute the limits of the functions: 1. \( \lim _{x \rightarrow 2} \frac{2^{x}-x^{2}}{(x-2)^{2}} \), 2. \( \lim _{x \rightarrow 0} \frac{\tan ^{-1}(2 x)-\tan (2 x)}{x^{3}} \), 3. \( \lim _{x \rightarrow 0} \frac{x^{2}+2^{x}}{2 x^{3}-2} \).

2.1.1 Calculation of limits

1.53 $

Problem: Compute the limit of the function \[ \lim _{x \rightarrow 0}\left(\frac{1}{x^{2}}-\frac{\cot x}{x}\right) \text {. } \]

2.1.2 Calculation of limits

0.76 $

Problem: Find the limits of functions without using L'Hopital's rule. 1. \( \lim _{x \rightarrow \infty} \frac{\sqrt{x^{2}+1}+\sqrt{x}}{\sqrt[5]{x^{3}+x}-2 x} \), 2. \( \lim _{x \rightarrow 0} \frac{\cos 2 x-\cos 4 x}{3 x^{2}} \) 3. \( \lim _{x \rightarrow \infty}\left(\frac{2 x+5}{1+2 x}\right)^{5 x} \).

2.1.3 Calculation of limits

1.53 $

Problem: Check that function \( U=\ln \frac{1}{\sqrt{x^{2}+y^{2}}} \) is a solution to the partial differential equation \( \frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0 \).

2.2.1 Derivatives and differentials

1.02 $

Problem: Calculate the derivative of the complex function: \[ f(x)=\tan ^{-1}\left(\frac{\ln (x+2)}{\sin \sqrt{2 x}}\right), g(x)=\sqrt{\cos 4 x} . \]

2.2.2 Derivatives and differentials

1.02 $

Problem: Calculate the derivative of the implicitly defined function \( y^{2}-\sin (2 x+y)=x^{3} \).

2.2.3 Derivatives and differentials

0.76 $

Problem: Find the first and second order partial derivatives of the function: \[ z=\frac{1}{\tan ^{-1} \frac{y}{x}} . \]

2.2.4 Derivatives and differentials

1.27 $

Problem: Find the first and second order partial derivatives of the function: \[ z=\ln \left(\frac{1}{\sqrt[3]{x}}-\frac{1}{\sqrt[3]{y}}\right) \]

2.2.5 Derivatives and differentials

1.02 $

Problem: Find the first and second order total differentials of the function: \[ \omega=\sin ^{-1} \frac{x}{y} \text {. } \]

2.2.6 Derivatives and differentials

1.02 $

Problem: Approximately calculate (using the differential): \[ A=(1,02)^{2} \cdot(0,97)^{2} \text {. } \]

2.2.7 Derivatives and differentials

1.02 $

Problem: Find the partial derivatives and the differentials of the first and second order: \[ z=\tan ^{-1} \frac{y}{x} . \]

2.2.8 Derivatives and differentials

1.27 $

Problem: A complex function is given: \[ z=\frac{y}{x} \text {, where } x=e^{t}, y=1-e^{2 t} \text {. } \] Find \( \frac{d z}{d t}, \quad \frac{d^{2} z}{d t^{2}} \).

2.2.9 Derivatives and differentials

0.76 $

  • ‹
  • 1
  • 2
  • 3
  • 4
  • ...
  • 116
  • 117
  • ›

mathproblemsbank.net

Terms of use Privacy policy

© Copyright 2025, MathProblemsBank

Trustpilot
Order a solution
Order a solution to a problem?
Order a solution
Order a solution to a problem?
home.button.login