MathProblemsBank Math Problems Bank
  • Home
  • Forum
  • About Us
  • Contact Us
  • Login
  • Register
  • language
 MathProblemsBank banner

MathProblemsBank banner

Math Problems and solutions

Mathematics sections
  • Algebra
    • Vector Algebra
    • Determinant calculation
    • Permutation group
    • Matrix transformations
    • Linear transformations
    • Quadratic forms
    • Fields, Groups, Rings
    • Systems of algebraic equations
    • Linear spaces
    • Polynomials
    • Tensor calculus
    • Vector analysis
  • Analytic geometry
    • Curves of the 2-nd order
    • Surfaces of the 2-nd order
    • Lines on a plane
    • Line and plane in space
    • Tangents and normals
  • Complex analysis
    • Operations with complex numbers
    • Singular points and residues
    • Integral of a complex variable
    • Laplace transform
    • Conformal mappings
    • Analytic functions
    • Series with complex terms
    • Calculating integrals of a real variable using residues
  • Differential equations
    • Ordinary differential equations
      • First order differential equations
      • Second order differential equations
      • Higher order differential equations
      • Geometric and physical applications
    • Systems of ordinary differential equations
    • Stability
      • Stability of the equations
      • Stability of the systems of equations
    • Operating method
      • Differential equations
      • Systems of differential equations
  • Differential geometry
  • Discret mathematics
    • Boolean algebra
    • Set theory
    • Combinatorics
    • Graph theory
    • Binary relations
    • Propositional algebra
      • Propositional calculus
      • Sequent calculus
    • Predicate calculus
    • Theory of algorithms and formal languages
    • Automata theory
    • Recursive functions
  • Functional analysis
    • Metric spaces
      • Properties of metric spaces
      • Orthogonal systems
      • Convergence in metric spaces
    • Normed spaces
      • Properties of normed spaces
      • Convergence in normed spaces
    • Measure theory
      • Lebesgue measure and integration
      • Measurable functions and sets
      • Convergence (in measure, almost everywhere)
    • Compactness
    • Linear operators
    • Integral equations
    • Properties of sets
    • Generalized derivatives
    • Riemann-Stieltjes integral
  • Geometry
    • Planimetry
      • Transformations on the plane
      • Construction problems
      • Complex numbers in geometry
      • Various problems on the plane
      • Locus of points
    • Stereometry
      • Construction of sections
      • Various problems in the space
    • Affine transformations
  • Mathematical analysis
    • Gradient and directional derivative
    • Graphing functions using derivatives
    • Plotting functions
    • Fourier series
      • Trigonometric Fourier series
      • Fourier integral
    • Number series
    • Function extrema
    • Power series
    • Function properties
    • Derivatives and differentials
    • Functional sequences and series
    • Calculation of limits
    • Asymptotic analysis
  • Mathematical methods and models in economics
  • Mathematical physics
    • First order partial differential equations
    • Second order partial differential equations
      • d'Alembert method
      • Fourier method
      • With constant coefficients
      • With variable coefficients
      • Mixed problems
    • Convolution of functions
    • Nonlinear equations
    • Sturm-Liouville problem
    • Systems of equations in partial derivatives of the first order
  • Mathematical statistics
  • Numerical methods
    • Golden section search method
    • Least square method
    • Sweep method
    • Simple-Iteration method
    • Approximate calculation of integrals
    • Approximate solution of differential equations
    • Approximate numbers
    • Function Interpolation
    • Approximate solution of algebraic equations
  • Olympiad problems
    • Olympic geometry
    • Number theory
    • Olympic algebra
    • Various Olympiad problems
    • Inequalities
      • Algebraic
      • Geometric
    • Higher mathematics
  • Probability theory
    • One dimensional random variables and their characteristics
    • Theory of random processes
    • Markov chains
    • Queuing systems
    • Two-dimensional random variables and their characteristics
    • Definition and properties of probability
    • Limit theorems
  • Real integrals
    • Integrals of functions of a single variable
      • Indefinite integrals
      • Definite Integrals
      • Improper integrals
    • Double integrals
    • Triple integrals
    • The area of a region
    • Volume of a solid
    • Volume of a solid of revolution
    • Flux of the vector field
    • Surface integrals
    • Curvilinear integrals
    • Potential and solenoidal fields
    • Vector field circulation
    • Integrals depending on a parameter
  • Topology
  • USE problems
  • Variational calculus
Problem list Free problems

Attention! If a subsection is selected, then the search will be performed in it!

Problem: Find the image of domain \( D=\{\operatorname{Im} z>0\} \backslash\{z=i t, 0

10.5.8 Conformal mappings

6.37 $

Problem: Find the image of domain \( D \) for the mapping \( w=f(z) \), where \[ D:\left\{\begin{array}{l} 0<\operatorname{Re} z<\pi, \quad \operatorname{Im} z<0 \\ z \neq \frac{\pi}{2}+i t, \quad t \in[-1 ; 0) \end{array}, \quad f(z)=e^{i z} .\right. \]

10.5.9 Conformal mappings

5.1 $

Problem: Find the image of domain \( D \) for the mapping \( w=f(z) \), where \[ D:\left\{\begin{array}{c} -2<\operatorname{Re} z<0, \\ z \neq t, \quad t \in[-1 ; 0), \quad f(z)=\cos \frac{\pi z}{2} . \end{array}\right. \]

10.5.10 Conformal mappings

5.1 $

Problem: Find the image of domain \( D \) for the mapping \( w=f(z) \), where \[ D:\left\{\begin{array}{c} 0<\operatorname{Re} z<\frac{1}{2}, \quad f(z)=\tan \pi z . \\ \operatorname{Im} z>0 \end{array}\right. \]

10.5.11 Conformal mappings

6.37 $

Problem: Find the image of domain \( D \) for the linear-fractional mapping \( w=f(z) \), where \[ D:\{|z|<1\}, \quad f(z)=\frac{2 z}{z+2 i} . \]

10.5.12 Conformal mappings

5.1 $

Problem: Find the image of domain \[ D=\{|z|>1\} \cup\{|z| \leq 1 ; \operatorname{Im} z<0\} \backslash\{z=i t, 1

10.5.13 Conformal mappings

6.37 $

Problem: Find the image of domain \[ D=\{-\pi<\operatorname{Im} z<3 \pi\} \backslash\{z=i t, \pi \leq t<3 \pi)\} \] for the mapping \( w=f(z) \), where \[ f(z)=e^{-\frac{z}{2}} . \]

10.5.14 Conformal mappings

6.37 $

Problem: Find the image of domain \[ D=\{-\pi / 2<\operatorname{Re} z<0\} \backslash\{z=i t,-1 \leq t<0\} \] for the mapping \( w=f(z) \), where \( f(z)=\cos 2 z \).

10.5.15 Conformal mappings

5.1 $

Problem: Find the image of domain \( D \) for the mapping \( w=f(z) \), where \[ D:\left\{\begin{array}{l} \operatorname{Re} z<0 \\ |\operatorname{Im} z|<\frac{\pi}{4}, \quad f(z)=\operatorname{th} 2 z . \end{array}\right. \]

10.5.16 Conformal mappings

6.37 $

Problem: Find the image of domain \[ D=\{|z|>1\} \cup\{|z| \leq 1, \operatorname{Im} z>0\} \backslash\{z=i t,-2 \leq t<-1\} \] when mapped by the Joukowsky transform: \[ f(z)=\frac{1}{2}\left(z+\frac{1}{z}\right) \]

10.5.17 Conformal mappings

6.37 $

Problem: Find the image of domain \( D \) for the linear-fractional mapping \( w=f(z) \), where \( D: \operatorname{Re} z<-1, \quad f(z)=\frac{z}{z+1+i} \).

10.5.18 Conformal mappings

3.82 $

Problem: Find the image of domain \[ D=\{-\pi<\operatorname{Re} z<0\} \backslash\{z=t,-1 \leq t<0\} \] for the mapping \( f(z)=e^{-i z} \).

10.5.19 Conformal mappings

3.82 $

Problem: Find the image of domain \( D=\{|\operatorname{Re} z|<\pi\} \cup\{\operatorname{Im} z>0\} \backslash\{z=i t, t \in[1 ;+\infty)\} \) for the mapping \[ f(z)=\sin \frac{z}{2} \text {. } \]

10.5.20 Conformal mappings

6.37 $

Problem: Find the image of domain \( D \) for the mapping \( w=f(z) \), where \[ D:\left\{\begin{array}{c} \operatorname{Re} z>0 \\ 0<\operatorname{Im} z<\pi \end{array}, \quad f(z)=\operatorname{cth} z .\right. \]

10.5.21 Conformal mappings

5.1 $

Problem: Find the image of domain \( D \) for the linear-fractional mapping \( w=f(z) \), where \[ D:|z-1-i|<\sqrt{2}, \quad f(z)=\frac{2}{z} . \]

10.5.22 Conformal mappings

3.82 $

  • ‹
  • 1
  • 2
  • ...
  • 114
  • 115
  • 116
  • 117
  • ›

mathproblemsbank.net

Terms of use Privacy policy

© Copyright 2025, MathProblemsBank

Trustpilot
Order a solution
Order a solution to a problem?
Order a solution
Order a solution to a problem?
home.button.login