MathProblemsBank Math Problems Bank
  • Home
  • Forum
  • About Us
  • Contact Us
  • Login
  • Register
  • language
 MathProblemsBank banner

MathProblemsBank banner

Math Problems and solutions

Mathematics sections
  • Algebra
    • Vector Algebra
    • Determinant calculation
    • Permutation group
    • Matrix transformations
    • Linear transformations
    • Quadratic forms
    • Fields, Groups, Rings
    • Systems of algebraic equations
    • Linear spaces
    • Polynomials
    • Tensor calculus
    • Vector analysis
  • Analytic geometry
    • Curves of the 2-nd order
    • Surfaces of the 2-nd order
    • Lines on a plane
    • Line and plane in space
    • Tangents and normals
  • Complex analysis
    • Operations with complex numbers
    • Singular points and residues
    • Integral of a complex variable
    • Laplace transform
    • Conformal mappings
    • Analytic functions
    • Series with complex terms
    • Calculating integrals of a real variable using residues
  • Differential equations
    • Ordinary differential equations
      • First order differential equations
      • Second order differential equations
      • Higher order differential equations
      • Geometric and physical applications
    • Systems of ordinary differential equations
    • Stability
      • Stability of the equations
      • Stability of the systems of equations
    • Operating method
      • Differential equations
      • Systems of differential equations
  • Differential geometry
  • Discret mathematics
    • Boolean algebra
    • Set theory
    • Combinatorics
    • Graph theory
    • Binary relations
    • Propositional algebra
      • Propositional calculus
      • Sequent calculus
    • Predicate calculus
    • Theory of algorithms and formal languages
    • Automata theory
    • Recursive functions
  • Functional analysis
    • Metric spaces
      • Properties of metric spaces
      • Orthogonal systems
      • Convergence in metric spaces
    • Normed spaces
      • Properties of normed spaces
      • Convergence in normed spaces
    • Measure theory
      • Lebesgue measure and integration
      • Measurable functions and sets
      • Convergence (in measure, almost everywhere)
    • Compactness
    • Linear operators
    • Integral equations
    • Properties of sets
    • Generalized derivatives
    • Riemann-Stieltjes integral
  • Geometry
    • Planimetry
      • Transformations on the plane
      • Construction problems
      • Complex numbers in geometry
      • Various problems on the plane
      • Locus of points
    • Stereometry
      • Construction of sections
      • Various problems in the space
    • Affine transformations
  • Mathematical analysis
    • Gradient and directional derivative
    • Graphing functions using derivatives
    • Plotting functions
    • Fourier series
      • Trigonometric Fourier series
      • Fourier integral
    • Number series
    • Function extrema
    • Power series
    • Function properties
    • Derivatives and differentials
    • Functional sequences and series
    • Calculation of limits
    • Asymptotic analysis
  • Mathematical methods and models in economics
  • Mathematical physics
    • First order partial differential equations
    • Second order partial differential equations
      • d'Alembert method
      • Fourier method
      • With constant coefficients
      • With variable coefficients
      • Mixed problems
    • Convolution of functions
    • Nonlinear equations
    • Sturm-Liouville problem
    • Systems of equations in partial derivatives of the first order
  • Mathematical statistics
  • Numerical methods
    • Golden section search method
    • Least square method
    • Sweep method
    • Simple-Iteration method
    • Approximate calculation of integrals
    • Approximate solution of differential equations
    • Approximate numbers
    • Function Interpolation
    • Approximate solution of algebraic equations
  • Olympiad problems
    • Olympic geometry
    • Number theory
    • Olympic algebra
    • Various Olympiad problems
    • Inequalities
      • Algebraic
      • Geometric
    • Higher mathematics
  • Probability theory
    • One dimensional random variables and their characteristics
    • Theory of random processes
    • Markov chains
    • Queuing systems
    • Two-dimensional random variables and their characteristics
    • Definition and properties of probability
    • Limit theorems
  • Real integrals
    • Integrals of functions of a single variable
      • Indefinite integrals
      • Definite Integrals
      • Improper integrals
    • Double integrals
    • Triple integrals
    • The area of a region
    • Volume of a solid
    • Volume of a solid of revolution
    • Flux of the vector field
    • Surface integrals
    • Curvilinear integrals
    • Potential and solenoidal fields
    • Vector field circulation
    • Integrals depending on a parameter
  • Topology
  • USE problems
  • Variational calculus
Problem list Free problems

Attention! If a subsection is selected, then the search will be performed in it!

Problem: Find the curvature and the torsion of the curve: \[ x=\cos ^{2} t, \quad y=\sin ^{3} t, \quad z=\cos 2 t . \]

7.4 Differential geometry

5.09 $

Problem: \( A=\{a, b, c\}, B=\{1,2,3,4\}, P_{1} \subseteq A \cdot B, P_{2} \subseteq B^{2} \). Represent \( P_{1}, P_{2} \) graphically. Find the matrix \( \left(P_{1} \circ P_{2}\right)^{-1} \). Using the matrix, check whether the relation \( P_{2} \) is reflexive, symmetric, antisymmetric, transitive? What class of relations does it belong to? \[ \begin{array}{l} P_{1}=\{(a, 1),(a, 2),(a, 3),(a, 4),(b, 3),(c, 2)\} \\ P_{2}=\{(1,1),(1,4),(2,2),(2,3),(3,3),(3,2),(4,1),(4,4)\} . \end{array} \]

6.2.1 Binary relations

3.82 $

Problem: Find the domain of definition, the domain of values of the relation \( P \). Is the relation \( P \) reflexive, antireflexive, symmetrical, antisymmetric, nonsymmetrical, transitive? What class of relations does it belong to? Justify your answer. \[ P \subseteq R^{2},(x, y) \in P \Leftrightarrow x \cdot y>1 . \]

6.2.2 Binary relations

2.54 $

Problem: Present the given relationship in the form of a graph and a matrix. Determine the properties of the relation (symmetry, reflexivity, transitivity). \[ R=\left\{\begin{array}{l} a b \\ a c \\ c b \\ a a \end{array}\right\} . \]

6.2.3 Binary relations

2.54 $

Problem: Show that \( R \circ R \subseteq R \) for any transitive binary relation \( R \). Can this inclusion be strict?

6.2.4 Binary relations

2.54 $

Problem: Let's consider on the set \( \mathbb{Z}^{2} \) the binary relation \( (k, l) \sim(m, n) \), which means that \( m+n-k-l \) is divisible by 3 . Is it an equivalence? Draw on checkered paper all such points \( (m, n), 0 \leq \) \( m, n \leq 10 \) that \( (m, n) \sim(0,0) \). Find the maximum number of pairwise incomparable points.

6.2.5 Binary relations

3.82 $

Problem: Show that the relation \( x \equiv y(\bmod \mathbb{Z}) \), meaning that \( x-y \in \mathbb{Z} \), gives an equivalence on the set of real numbers \( R \), and construct an explicit bijection between the quotient set \( R / \mathbb{Z} \) and the unit circle \( S^{1} \stackrel{\text { def }}{=}\left\{(x, y) \in \mathbb{R}^{2} \mid x^{2}+y^{2}=1\right\} \) in \( \mathbb{R}^{2} \). Does the standard order in \( \mathbb{R} \) induce any order in \( \mathbb{R} / \mathbb{Z} \) ? Construct an explicit bijection between the functions \( S^{1} \rightarrow \mathbb{R} \) and the periodic functions \( \mathbb{R} \rightarrow \mathbb{R} \) of period 1 .

6.2.6 Binary relations

5.09 $

Problem: Prove the identity, using the laws of Boolean algebra. Represent one of the expressions in the basis of elementary functions: \begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|} \hline\( y_{1} \) & \( y_{2} \) & \( y_{3} \) & \( y_{4} \) & \( y_{5} \) & \( y_{6} \) & \( y_{7} \) & \( y_{8} \) & \( y_{9} \) & \( y_{10} \) & \( y_{11} \) \\ \hline 0 & \begin{tabular}{l} \( a \) \\ \( \wedge b \) \end{tabular} & \( a \) & \( a \oplus b \) & \begin{tabular}{l} \( a \) \\ \( \vee \vee b \) \end{tabular} & \begin{tabular}{l} \( a \) \\ \( \downarrow b \) \end{tabular} & \begin{tabular}{l} \( a \) \\ \( \Leftrightarrow b \) \end{tabular} & \( \bar{a} \) & \begin{tabular}{l} \( a \) \\ \( \rightarrow b \) \end{tabular} & \( a \mid b \) & 1 \\ \hline \end{tabular} The set of basic function numbers should include the numbers of your option. For example, for option 1 \( y_{1}, y_{11}, y_{10} \) can be taken, the missing functions are selected based on Post's completeness theorem. \[ \begin{array}{l} ((a \wedge \bar{c}) \downarrow(b \wedge \bar{c})) \wedge((a \mid d)(\overrightarrow{b \wedge d}))= \\ =((a \mid b) \mid(a \oplus \bar{b})) \rightarrow((c \oplus d) \wedge(d \rightarrow c)), \text { option } 2 . \end{array} \]

6.3.1 Boolean algebra

5.09 $

Problem: Find the image of domain \( D=\{z \in \mathbb{C}:|z+1-2 i|<3\} \) for the linear - fractional transformation \[ f(z)=\frac{z+1+i}{z-1-i} \text {. } \]

10.5.1 Conformal mappings

5.09 $

Problem: Find the image of domain \[ D=\{|z|>1\} \cup\left\{|z| \leq 1, I_{m} z>0\right\} \backslash\{z=i t,-4 \leq t<-1\} \] when mapped by the Joukowsky transform: \[ f(z)=\frac{1}{2}\left(z+\frac{1}{z}\right) \text {. } \]

10.5.2 Conformal mappings

6.36 $

Problem: Find the image of domain \[ D=\{\operatorname{Re} z<0\} \cup\{0<\operatorname{Im} z<2 \pi\} \backslash\{z \neq t+2 \pi,-\infty

10.5.3 Conformal mappings

6.36 $

Problem: Find the image of domain \[ D=\{\operatorname{Re} z<0\} \cup\{0<\operatorname{Im} z<2\} \backslash\{z \neq t+i,-\infty

10.5.4 Conformal mappings

6.36 $

Problem: Find the image of domain \( D=\{0<\operatorname{Re} z<1\} \cup\{\operatorname{Im} z>0\} \) for the function mapping \( f(z)=\tanh i \pi z \).

10.5.5 Conformal mappings

6.36 $

Problem: Find the tangent planes of the surface \( z=x^{4}-2 x y^{3} \), orthogonal to the vector \( \vec{a}(-2,6,1) \).

7.6 Differential geometry

2.54 $

Problem: Find the angle between the lines \( u+v=0 \), \( u=\tan v \) at their common point on the surface \[ x=u \cos v, y=u \sin v, z=u+v . \]

7.7 Differential geometry

3.82 $

  • ‹
  • 1
  • 2
  • ...
  • 13
  • ...
  • 116
  • 117
  • ›

mathproblemsbank.net

Terms of use Privacy policy

© Copyright 2025, MathProblemsBank

Trustpilot
Order a solution
Order a solution to a problem?
Order a solution
Order a solution to a problem?
home.button.login