MathProblemsBank Math Problems Bank
  • Home
  • Forum
  • About Us
  • Contact Us
  • Login
  • Register
  • language
 MathProblemsBank banner

MathProblemsBank banner

Math Problems and solutions

Mathematics sections
  • Algebra
    • Vector Algebra
    • Determinant calculation
    • Permutation group
    • Matrix transformations
    • Linear transformations
    • Quadratic forms
    • Fields, Groups, Rings
    • Systems of algebraic equations
    • Linear spaces
    • Polynomials
    • Tensor calculus
    • Vector analysis
  • Analytic geometry
    • Curves of the 2-nd order
    • Surfaces of the 2-nd order
    • Lines on a plane
    • Line and plane in space
    • Tangents and normals
  • Complex analysis
    • Operations with complex numbers
    • Singular points and residues
    • Integral of a complex variable
    • Laplace transform
    • Conformal mappings
    • Analytic functions
    • Series with complex terms
    • Calculating integrals of a real variable using residues
  • Differential equations
    • Ordinary differential equations
      • First order differential equations
      • Second order differential equations
      • Higher order differential equations
      • Geometric and physical applications
    • Systems of ordinary differential equations
    • Stability
      • Stability of the equations
      • Stability of the systems of equations
    • Operating method
      • Differential equations
      • Systems of differential equations
  • Differential geometry
  • Discret mathematics
    • Boolean algebra
    • Set theory
    • Combinatorics
    • Graph theory
    • Binary relations
    • Propositional algebra
      • Propositional calculus
      • Sequent calculus
    • Predicate calculus
    • Theory of algorithms and formal languages
    • Automata theory
    • Recursive functions
  • Functional analysis
    • Metric spaces
      • Properties of metric spaces
      • Orthogonal systems
      • Convergence in metric spaces
    • Normed spaces
      • Properties of normed spaces
      • Convergence in normed spaces
    • Measure theory
      • Lebesgue measure and integration
      • Measurable functions and sets
      • Convergence (in measure, almost everywhere)
    • Compactness
    • Linear operators
    • Integral equations
    • Properties of sets
    • Generalized derivatives
    • Riemann-Stieltjes integral
  • Geometry
    • Planimetry
      • Transformations on the plane
      • Construction problems
      • Complex numbers in geometry
      • Various problems on the plane
      • Locus of points
    • Stereometry
      • Construction of sections
      • Various problems in the space
    • Affine transformations
  • Mathematical analysis
    • Gradient and directional derivative
    • Graphing functions using derivatives
    • Plotting functions
    • Fourier series
      • Trigonometric Fourier series
      • Fourier integral
    • Number series
    • Function extrema
    • Power series
    • Function properties
    • Derivatives and differentials
    • Functional sequences and series
    • Calculation of limits
    • Asymptotic analysis
  • Mathematical methods and models in economics
  • Mathematical physics
    • First order partial differential equations
    • Second order partial differential equations
      • d'Alembert method
      • Fourier method
      • With constant coefficients
      • With variable coefficients
      • Mixed problems
    • Convolution of functions
    • Nonlinear equations
    • Sturm-Liouville problem
    • Systems of equations in partial derivatives of the first order
  • Mathematical statistics
  • Numerical methods
    • Golden section search method
    • Least square method
    • Sweep method
    • Simple-Iteration method
    • Approximate calculation of integrals
    • Approximate solution of differential equations
    • Approximate numbers
    • Function Interpolation
    • Approximate solution of algebraic equations
  • Olympiad problems
    • Olympic geometry
    • Number theory
    • Olympic algebra
    • Various Olympiad problems
    • Inequalities
      • Algebraic
      • Geometric
    • Higher mathematics
  • Probability theory
    • One dimensional random variables and their characteristics
    • Theory of random processes
    • Markov chains
    • Queuing systems
    • Two-dimensional random variables and their characteristics
    • Definition and properties of probability
    • Limit theorems
  • Real integrals
    • Integrals of functions of a single variable
      • Indefinite integrals
      • Definite Integrals
      • Improper integrals
    • Double integrals
    • Triple integrals
    • The area of a region
    • Volume of a solid
    • Volume of a solid of revolution
    • Flux of the vector field
    • Surface integrals
    • Curvilinear integrals
    • Potential and solenoidal fields
    • Vector field circulation
    • Integrals depending on a parameter
  • Topology
  • USE problems
  • Variational calculus
Problem list Free problems

Attention! If a subsection is selected, then the search will be performed in it!

Problem: Prove that the groups \[ \left\langle R \backslash\{0\}, \cdot,{ }^{-1}\right\rangle \text { and }\left\langle R_{>0}, \cdot,{ }^{-1}\right\rangle \] are not isomorphic.

1.6.4 Fields, Groups, Rings

2.06 $

Problem: Find the order of each element in the group of 6th roots of 1 .

1.6.5 Fields, Groups, Rings

3.85 $

Problem: Find the sign and the order of permutation \( \alpha \), and also find the permutation \( \alpha^{1644} \), where \[ \alpha=(02) \cdot(0982) \cdot(45) \cdot(3579) \cdot(2684) \cdot(1825) \text {. } \]

1.3.2 Permutation group

2.57 $

Problem: Find the number of distinct subgroups of order 7 in the permutation group \( S_{15} \).

1.3.3 Permutation group

3.85 $

Problem: On the set \( A=\left\{\langle a, b\rangle \mid a, b \in R, a^{2}+b^{2} \neq 0\right\} \) the operation \( \langle a, b\rangle *\langle c, d\rangle=\langle a c-b d, a d+b c\rangle \) is defined. Define the transition operation \( { }^{-1} \) to the inverse element so that the set \( \left\langle A, *,{ }^{-1}\right\rangle \) is a group.

1.6.3 Fields, Groups, Rings

5.14 $

Problem: Is the mapping \( f \) of the group \( \langle\mathbb{Z} / 4 \mathbb{Z},+,-\rangle \) to the group \( \langle\mathbb{Z},+,-\rangle \), homomorphic such that a) \( f(\overline{2})=2 \); b) \( f(\overline{3})=3 \).

1.6.6 Fields, Groups, Rings

3.08 $

Problem: Prove that the factor group \( \mathbb{R}^{*} / \mathbb{Q}^{*} \) is not cyclic.

1.6.7 Fields, Groups, Rings

3.85 $

30 Problem: Calculate the definite integral: \[ \int_{0}^{1} \frac{4 x^{3}+11 x^{2}+12 x+4}{(x+1)^{2}\left(x^{2}+2 x+2\right)} d x . \]

9.3.3.7 Definite Integrals

1.28 $

Problem: Calculate the indefinite integral: \[ \int \frac{x^{4}-3 x^{3}+15 x-25}{(x+2)(x-1)(x-3)} d x \]

9.3.1.6 Indefinite integrals

1.28 $

Problem: Calculate the indefinite integral: \[ \int \frac{-x^{4}-8 x^{3}-18 x^{2}-13 x-1}{(x+1)^{4}(x+2)} d x \]

9.3.1.7 Indefinite integrals

1.8 $

Problem: Solve the system of differential equations by bringing it to a second order differential equation: \[ \left\{\begin{array}{l} \frac{d x}{d t}=x+2 y+e^{\prime} \\ \frac{d y}{d t}=2 x+y \end{array} .\right. \]

8.3.19 Systems of ordinary differential equations

2.57 $

Problem: Find the general solution of the first-order partial differential equation: \[ x^{2} z \frac{\partial z}{\partial x}-y^{2} z \frac{\partial z}{\partial y}=x+y . \]

11.4.4 First order partial differential equations

3.08 $

Problem: Solve the first-order partial differential equation under the given additional conditions: \[ x \frac{\partial z}{\partial x}-z \frac{\partial z}{\partial y}=z+2 x^{2}, \quad y=\frac{1}{4}-x^{2} \Rightarrow z=x . \]

11.4.5 First order partial differential equations

3.85 $

Problem: Find the general solution of the system of linear partial differential equations of the first order: \[ \left\{\begin{array}{l} \frac{\partial u}{\partial x}-\frac{\partial v}{\partial y}=0 \\ \frac{\partial u}{\partial y}-\frac{\partial v}{\partial x}=0 \end{array}\right. \]

11.6.4 Systems of equations in partial derivatives of the first order

5.14 $

Problem: Find the temperature distribution \( u(r ; t) \) inside the ball \( r \leq l \), if the initial temperature distribution inside the ball \( \varphi(r) \) is given. \begin{tabular}{|c|c|} \hline\( \left.u\right|_{l} \) & \( \left.u\right|_{t=0}=\varphi \) \\ \hline\( \left.u\right|_{r=l}=0 \) & \( \left.u\right|_{t=0}=\frac{A}{l}\left(\frac{r^{2}}{12 l^{2}}-\frac{r}{4 l^{2}}\right) \) \\ \hline \end{tabular}

11.5.2.3 Fourier method

7.71 $

  • ‹
  • 1
  • 2
  • ...
  • 37
  • ...
  • 116
  • 117
  • ›

mathproblemsbank.net

Terms of use Privacy policy

© Copyright 2025, MathProblemsBank

Trustpilot
Order a solution
Order a solution to a problem?
Order a solution
Order a solution to a problem?
home.button.login