MathProblemsBank Math Problems Bank
  • Home
  • Forum
  • About Us
  • Contact Us
  • Login
  • Register
  • language
 MathProblemsBank banner

MathProblemsBank banner

Math Problems and solutions

Mathematics sections
  • Algebra
    • Vector Algebra
    • Determinant calculation
    • Permutation group
    • Matrix transformations
    • Linear transformations
    • Quadratic forms
    • Fields, Groups, Rings
    • Systems of algebraic equations
    • Linear spaces
    • Polynomials
    • Tensor calculus
    • Vector analysis
  • Analytic geometry
    • Curves of the 2-nd order
    • Surfaces of the 2-nd order
    • Lines on a plane
    • Line and plane in space
    • Tangents and normals
  • Complex analysis
    • Operations with complex numbers
    • Singular points and residues
    • Integral of a complex variable
    • Laplace transform
    • Conformal mappings
    • Analytic functions
    • Series with complex terms
    • Calculating integrals of a real variable using residues
  • Differential equations
    • Ordinary differential equations
      • First order differential equations
      • Second order differential equations
      • Higher order differential equations
      • Geometric and physical applications
    • Systems of ordinary differential equations
    • Stability
      • Stability of the equations
      • Stability of the systems of equations
    • Operating method
      • Differential equations
      • Systems of differential equations
  • Differential geometry
  • Discret mathematics
    • Boolean algebra
    • Set theory
    • Combinatorics
    • Graph theory
    • Binary relations
    • Propositional algebra
      • Propositional calculus
      • Sequent calculus
    • Predicate calculus
    • Theory of algorithms and formal languages
    • Automata theory
    • Recursive functions
  • Functional analysis
    • Metric spaces
      • Properties of metric spaces
      • Orthogonal systems
      • Convergence in metric spaces
    • Normed spaces
      • Properties of normed spaces
      • Convergence in normed spaces
    • Measure theory
      • Lebesgue measure and integration
      • Measurable functions and sets
      • Convergence (in measure, almost everywhere)
    • Compactness
    • Linear operators
    • Integral equations
    • Properties of sets
    • Generalized derivatives
    • Riemann-Stieltjes integral
  • Geometry
    • Planimetry
      • Transformations on the plane
      • Construction problems
      • Complex numbers in geometry
      • Various problems on the plane
      • Locus of points
    • Stereometry
      • Construction of sections
      • Various problems in the space
    • Affine transformations
  • Mathematical analysis
    • Gradient and directional derivative
    • Graphing functions using derivatives
    • Plotting functions
    • Fourier series
      • Trigonometric Fourier series
      • Fourier integral
    • Number series
    • Function extrema
    • Power series
    • Function properties
    • Derivatives and differentials
    • Functional sequences and series
    • Calculation of limits
    • Asymptotic analysis
  • Mathematical methods and models in economics
  • Mathematical physics
    • First order partial differential equations
    • Second order partial differential equations
      • d'Alembert method
      • Fourier method
      • With constant coefficients
      • With variable coefficients
      • Mixed problems
    • Convolution of functions
    • Nonlinear equations
    • Sturm-Liouville problem
    • Systems of equations in partial derivatives of the first order
  • Mathematical statistics
  • Numerical methods
    • Golden section search method
    • Least square method
    • Sweep method
    • Simple-Iteration method
    • Approximate calculation of integrals
    • Approximate solution of differential equations
    • Approximate numbers
    • Function Interpolation
    • Approximate solution of algebraic equations
  • Olympiad problems
    • Olympic geometry
    • Number theory
    • Olympic algebra
    • Various Olympiad problems
    • Inequalities
      • Algebraic
      • Geometric
    • Higher mathematics
  • Probability theory
    • One dimensional random variables and their characteristics
    • Theory of random processes
    • Markov chains
    • Queuing systems
    • Two-dimensional random variables and their characteristics
    • Definition and properties of probability
    • Limit theorems
  • Real integrals
    • Integrals of functions of a single variable
      • Indefinite integrals
      • Definite Integrals
      • Improper integrals
    • Double integrals
    • Triple integrals
    • The area of a region
    • Volume of a solid
    • Volume of a solid of revolution
    • Flux of the vector field
    • Surface integrals
    • Curvilinear integrals
    • Potential and solenoidal fields
    • Vector field circulation
    • Integrals depending on a parameter
  • Topology
  • USE problems
  • Variational calculus
Problem list Free problems

Attention! If a subsection is selected, then the search will be performed in it!

Problem: Select the main part of the form \( C(x+1)^{k} \) of the infinitesimal function: \[ \alpha(x)=\sqrt{\pi}-\sqrt{\cos ^{-1} x}, \quad x \rightarrow-1 . \]

2.12.16 Asymptotic analysis

1.78 $

Problem: Select the main part of the form \( C\left(\frac{1}{x}\right)^{k} \) of the infinitesimal function: \[ \alpha(x)=\tan \frac{\pi x^{3}+2 x-1}{3 x^{3}-x+2}-\sqrt{3}, \quad x \rightarrow+\infty . \]

2.12.17 Asymptotic analysis

1.53 $

3) Problem: Calculate the line integral using the polygonal \( L \) : \[ \int_{L}\left(x^{3}+y\right) d x+\left(x+y^{2}\right) d y \] where 1) \( L: A B C, 2) L: A B C A, A(7 ; 7), B(3 ; 7), C(3 ; 5) \).

9.4.7 Curvilinear integrals

1.78 $

Problem: Calculate the line integral: \( L:\left\{\begin{array}{c}x=t^{2} \\ y=t\end{array}, \quad 1 \leq t \leq 2, \quad \int_{L} y x d x+y^{2} d y\right. \).

9.4.8 Curvilinear integrals

1.02 $

(3) Problem: Calculate the line integral over the closed polygonal \( A B C D A \) using Ostrogradsky-Green formula: \[ \begin{array}{l} A(3 ; 2), \quad B(6 ; 2), \quad C(6 ; 4), \quad D(3 ; 4) \\ \oint_{L} \sqrt{x^{2}+y^{2}} d x+y\left[x y+\ln \left(x+\sqrt{x^{2}+y^{2}}\right)\right] d y \end{array} \]

9.4.9 Curvilinear integrals

2.54 $

T Problem: Calculate the arc length of the curve given in Cartesian coordinates: \[ x=\ln \cos y, \quad 0 \leq y \leq \frac{\pi}{3} . \]

9.4.10 Curvilinear integrals

1.02 $

3 Problem: Calculate the arc length of the curve given in polar coordinates: \[ r=3(1+\sin a),-\frac{\pi}{6} \leq a \leq 0 \]

9.4.12 Curvilinear integrals

1.27 $

Problem: Prove that the integral \( I(\alpha) \) converges uniformly on the set \( \mathrm{E} \), if: \[ I(\alpha)=\int_{0}^{+\infty} \cos x^{\alpha} d x, \mathrm{E}=\left[\alpha_{0} ;+\infty\right), \alpha_{0}>1 . \]

9.2.13 Integrals depending on a parameter

2.54 $

Problem: Investigate the following integral for uniform convergence: \[ I(\alpha)=\int_{0}^{+\infty} \frac{\sin e^{x}}{1+x^{\alpha}} d x . \]

9.2.14 Integrals depending on a parameter

2.54 $

Problem: Investigate the following integral for uniform convergence: \[ I(\alpha)=\int_{0}^{+\infty} \sqrt{\alpha} \cdot e^{-\alpha x^{2}} d x . \]

9.2.15 Integrals depending on a parameter

2.54 $

Problem: Investigate the continuity of the function \( F(y) \) on the set \( Y \) : \[ F(y)=\int_{0}^{\frac{\pi}{2}} \frac{d x}{x y-\sin x+1}, \quad Y=(0 ;+\infty) . \]

9.2.16 Integrals depending on a parameter

2.03 $

Problem: Using the Dirichlet/Frullani/Fresnel/Euler/Poisson/Laplace integrals, calculate the following integral: \[ I=\int_{0}^{+\infty} \frac{\cos ^{2} \alpha x}{\alpha^{2}+x^{2}} d x, \quad \alpha>0 . \]

9.2.17 Integrals depending on a parameter

3.31 $

Problem: Using the Dirichlet/Frullani/Fresnel/Euler/Poisson/Laplace integrals, calculate the following integral: \[ I=\int_{0}^{+\infty} \frac{\sin x-x \cos x}{x^{3}} d x . \]

9.2.18 Integrals depending on a parameter

4.32 $

Problem: Using the Euler integrals calculate the integral: \[ I=\int_{0}^{+\infty} \frac{\ln x}{\sqrt[3]{x}(x+2)} d x \]

9.2.19 Integrals depending on a parameter

3.81 $

Problem: Find the convolution of the functions \( f(x) \) and \( g(x) \), if the function \( f(x) \) takes a value, equal to zero, when \( x \notin\left[x_{1} ; x_{4}\right] \), and when \( x \in\left[x_{1} ; x_{4}\right] \) its graph consists of links of the broken-line \( A B C D \) : \[ \begin{array}{l} A\left(x_{1} ; 0\right), \quad B\left(x_{2} ; a\right), \quad C\left(x_{3} ; b\right), \quad D\left(x_{4} ; b\right) . \\ x_{1}=-2, \quad x_{2}=1, \quad x_{3}=3, \quad x_{4}=4, \quad a=2, \quad b=-1 . \end{array} \] The function \( g(x) \) has the form \[ g(x)=\left\{\begin{array}{ll} 0, & x<0 \\ 1, & 0 \leq x<1 \\ 0, & x \geq 0 \end{array}\right. \]

11.3.4 Convolution of functions

7.63 $

  • ‹
  • 1
  • 2
  • ...
  • 56
  • ...
  • 116
  • 117
  • ›

mathproblemsbank.net

Terms of use Privacy policy

© Copyright 2025, MathProblemsBank

Trustpilot
Order a solution
Order a solution to a problem?
Order a solution
Order a solution to a problem?
home.button.login