MathProblemsBank Math Problems Bank
  • Home
  • Forum
  • About Us
  • Contact Us
  • Login
  • Register
  • language
 MathProblemsBank banner

MathProblemsBank banner

Math Problems and solutions

Mathematics sections
  • Algebra
    • Vector Algebra
    • Determinant calculation
    • Permutation group
    • Matrix transformations
    • Linear transformations
    • Quadratic forms
    • Fields, Groups, Rings
    • Systems of algebraic equations
    • Linear spaces
    • Polynomials
    • Tensor calculus
    • Vector analysis
  • Analytic geometry
    • Curves of the 2-nd order
    • Surfaces of the 2-nd order
    • Lines on a plane
    • Line and plane in space
    • Tangents and normals
  • Complex analysis
    • Operations with complex numbers
    • Singular points and residues
    • Integral of a complex variable
    • Laplace transform
    • Conformal mappings
    • Analytic functions
    • Series with complex terms
    • Calculating integrals of a real variable using residues
  • Differential equations
    • Ordinary differential equations
      • First order differential equations
      • Second order differential equations
      • Higher order differential equations
      • Geometric and physical applications
    • Systems of ordinary differential equations
    • Stability
      • Stability of the equations
      • Stability of the systems of equations
    • Operating method
      • Differential equations
      • Systems of differential equations
  • Differential geometry
  • Discret mathematics
    • Boolean algebra
    • Set theory
    • Combinatorics
    • Graph theory
    • Binary relations
    • Propositional algebra
      • Propositional calculus
      • Sequent calculus
    • Predicate calculus
    • Theory of algorithms and formal languages
    • Automata theory
    • Recursive functions
  • Functional analysis
    • Metric spaces
      • Properties of metric spaces
      • Orthogonal systems
      • Convergence in metric spaces
    • Normed spaces
      • Properties of normed spaces
      • Convergence in normed spaces
    • Measure theory
      • Lebesgue measure and integration
      • Measurable functions and sets
      • Convergence (in measure, almost everywhere)
    • Compactness
    • Linear operators
    • Integral equations
    • Properties of sets
    • Generalized derivatives
    • Riemann-Stieltjes integral
  • Geometry
    • Planimetry
      • Transformations on the plane
      • Construction problems
      • Complex numbers in geometry
      • Various problems on the plane
      • Locus of points
    • Stereometry
      • Construction of sections
      • Various problems in the space
    • Affine transformations
  • Mathematical analysis
    • Gradient and directional derivative
    • Graphing functions using derivatives
    • Plotting functions
    • Fourier series
      • Trigonometric Fourier series
      • Fourier integral
    • Number series
    • Function extrema
    • Power series
    • Function properties
    • Derivatives and differentials
    • Functional sequences and series
    • Calculation of limits
    • Asymptotic analysis
  • Mathematical methods and models in economics
  • Mathematical physics
    • First order partial differential equations
    • Second order partial differential equations
      • d'Alembert method
      • Fourier method
      • With constant coefficients
      • With variable coefficients
      • Mixed problems
    • Convolution of functions
    • Nonlinear equations
    • Sturm-Liouville problem
    • Systems of equations in partial derivatives of the first order
  • Mathematical statistics
  • Numerical methods
    • Golden section search method
    • Least square method
    • Sweep method
    • Simple-Iteration method
    • Approximate calculation of integrals
    • Approximate solution of differential equations
    • Approximate numbers
    • Function Interpolation
    • Approximate solution of algebraic equations
  • Olympiad problems
    • Olympic geometry
    • Number theory
    • Olympic algebra
    • Various Olympiad problems
    • Inequalities
      • Algebraic
      • Geometric
    • Higher mathematics
  • Probability theory
    • One dimensional random variables and their characteristics
    • Theory of random processes
    • Markov chains
    • Queuing systems
    • Two-dimensional random variables and their characteristics
    • Definition and properties of probability
    • Limit theorems
  • Real integrals
    • Integrals of functions of a single variable
      • Indefinite integrals
      • Definite Integrals
      • Improper integrals
    • Double integrals
    • Triple integrals
    • The area of a region
    • Volume of a solid
    • Volume of a solid of revolution
    • Flux of the vector field
    • Surface integrals
    • Curvilinear integrals
    • Potential and solenoidal fields
    • Vector field circulation
    • Integrals depending on a parameter
  • Topology
  • USE problems
  • Variational calculus
Problem list Free problems

Attention! If a subsection is selected, then the search will be performed in it!

Problem: For the piecewise-constant functions \( f(x) \) and \( g(x) \) of the form \[ y(x)=\left\{\begin{array}{ll} 0, & x

11.3.5 Convolution of functions

8.9 $

Problem: Find the convolution of the functions \( f(x) \) and \( g(x) \), if the function \( f(x) \) takes the value, equal to zero, when \( x \notin\left[x_{1} ; x_{4}\right] \), and when \( x \in\left[x_{1} ; x_{4}\right] \) its graph consists of links of the broken-line \( A B C D \) : \[ \begin{array}{l} A\left(x_{1} ; a\right), \quad B\left(x_{2} ; a\right), \quad C\left(x_{3} ; b\right), \quad D\left(x_{4} ; 0\right) . \\ x_{1}=-1, \quad x_{2}=1, \quad x_{3}=4, \quad x_{4}=6, \quad a=-1, \quad b=2 . \end{array} \] The function \( g(x) \) has the form \[ g(x)=\left\{\begin{array}{ll} 0, & x<0 ; \\ 1, & 0 \leq x<1 ; \\ 0, & x \geq 0 . \end{array}\right. \]

11.3.6 Convolution of functions

7.63 $

Problem: For piecewise-constant functions \( f(x) \) and \( g(x) \) of the form \[ y(x)=\left\{\begin{array}{ll} 0, & x

11.3.7 Convolution of functions

8.9 $

Problem: Determine the order of smallness \( \alpha(x)=\sqrt{x^{2}+9}-3 \) with respect to \( \beta(x)=x \) when \( x \rightarrow 0 \).

2.12.11 Asymptotic analysis

1.02 $

Problem: Determine the order of smallness of \( \alpha(x)=\ln \left(x^{3}+3 x^{2}+3 x+2\right) \) with respect to \( \beta(x)=x+1 \) when \( x \rightarrow-1 \).

2.12.12 Asymptotic analysis

1.02 $

Problem: Determine the order of smallness of \( \alpha(x)=\sqrt{\cos \ln x}-1 \) with respect to \( \beta(x)=x-1 \) when \( x \rightarrow 1 \).

2.12.13 Asymptotic analysis

1.53 $

Problem: Given vectors \( \vec{a}=\overrightarrow{O A}, \vec{b}=\overrightarrow{O B}, \vec{c}=\overrightarrow{O C}, \vec{d}=\overrightarrow{O D} \). Beams \( O A, O B \) and \( O C \) are edges of e trihedral angle \( T \). 1) Prove that the vectors \( \vec{a}, \vec{b}, \vec{c} \) are linearly independent. 2) Decompose vector \( \vec{d} \) into vectors \( \vec{a}, \vec{b}, \vec{c} \) (solve the resulting system of equations using the inverse matrix). 3) Determine whether point \( D \) lies inside \( T \), outside \( T \), on one of the boundaries of \( T \) (which one?). 4) Determine for what values of the real parameter \( \lambda \) the vector \( \vec{d}+\lambda \vec{a} \), plotted from the point \( O \), lies inside the trihedral angle \( T \). \[ \vec{a}=\overrightarrow{\{3 ; 2 ; 1\}}, \quad \vec{b}=\overrightarrow{\{1 ;-1 ;-2\}}, \quad \vec{c}=\overrightarrow{\{-2 ; 3 ; 5\}}, \quad \vec{d}=\overrightarrow{\{7 ; 4 ; 1} . \]

1.1.4 Vector Algebra

3.81 $

Problem: Calculate the surface of the area \( D \) : \[ D:\left(\frac{x}{a}+\frac{y}{b}\right)^{3}=\frac{x y}{c^{2}} \text {. } \]

9.1.12 Double integrals

3.31 $

Problem: Find the double integral of the given function \( f(x, y) \) in the given area \( G \) : \[ \begin{array}{l} f(x, y)=e^{-\left(\frac{x}{a}\right)^{2}-\left(\frac{y}{b}\right)^{2}} \\ G:\left(\frac{x}{a}\right)^{2}+\left(\frac{y}{b}\right)^{2} \geq 1, \quad \iint_{G} f(x, y) d x d y-? \end{array} \]

9.1.13 Double integrals

1.78 $

Problem: Change the order of integration in iterated integral: \[ \int_{-1}^{1} d x \int_{x^{2}}^{2-x^{2}} f(x, y) d y \]

9.1.14 Double integrals

0 $

Problem: Find the double integral over the given area: \[ I=\iint_{D} e^{-x^{2}-y^{2}} d x d y, \quad D:\left\{\begin{array}{l} x=\sqrt{1-y^{2}} \\ x=y \\ x=-y \sqrt{3} \end{array}\right. \]

9.1.15 Double integrals

1.27 $

Problem: Find the particular solution of the equation with separable variables, satisfying the initial condition: \[ \left(1+y^{2}\right) d x-x y d y=0, \quad y_{0}=1 \text { when } x_{0}=2 . \]

8.1.1.27 First order differential equations

1.02 $

Problem: Find the general solution of the first order inhomogeneous differential equation: \[ x y^{\prime}+y=\ln x+1 \text {. } \]

8.1.1.28 First order differential equations

1.53 $

Problem: Find the general solution of the linear homogeneous differential equation: \[ y^{\prime \prime}+4 y^{\prime}=0 \text {. } \] clip2net.com

8.1.2.29 Second order differential equations

0 $

Problem: Calculate the volume of the solid \( V \), bounded by the given surfaces: \[ V:\left\{\begin{array}{l} x=16 \sqrt{2 y}, \quad x=\sqrt{2 y} \\ z+y=2, \quad z=0 \end{array}\right. \]

9.5.6 Volume of a solid

1.53 $

  • ‹
  • 1
  • 2
  • ...
  • 57
  • ...
  • 116
  • 117
  • ›

mathproblemsbank.net

Terms of use Privacy policy

© Copyright 2025, MathProblemsBank

Trustpilot
Order a solution
Order a solution to a problem?
Order a solution
Order a solution to a problem?
home.button.login