MathProblemsBank Math Problems Bank
  • Home
  • Forum
  • About Us
  • Contact Us
  • Login
  • Register
  • language
 MathProblemsBank banner

MathProblemsBank banner

Math Problems and solutions

Mathematics sections
  • Algebra
    • Vector Algebra
    • Determinant calculation
    • Permutation group
    • Matrix transformations
    • Linear transformations
    • Quadratic forms
    • Fields, Groups, Rings
    • Systems of algebraic equations
    • Linear spaces
    • Polynomials
    • Tensor calculus
    • Vector analysis
  • Analytic geometry
    • Curves of the 2-nd order
    • Surfaces of the 2-nd order
    • Lines on a plane
    • Line and plane in space
    • Tangents and normals
  • Complex analysis
    • Operations with complex numbers
    • Singular points and residues
    • Integral of a complex variable
    • Laplace transform
    • Conformal mappings
    • Analytic functions
    • Series with complex terms
    • Calculating integrals of a real variable using residues
  • Differential equations
    • Ordinary differential equations
      • First order differential equations
      • Second order differential equations
      • Higher order differential equations
      • Geometric and physical applications
    • Systems of ordinary differential equations
    • Stability
      • Stability of the equations
      • Stability of the systems of equations
    • Operating method
      • Differential equations
      • Systems of differential equations
  • Differential geometry
  • Discret mathematics
    • Boolean algebra
    • Set theory
    • Combinatorics
    • Graph theory
    • Binary relations
    • Propositional algebra
      • Propositional calculus
      • Sequent calculus
    • Predicate calculus
    • Theory of algorithms and formal languages
    • Automata theory
    • Recursive functions
  • Functional analysis
    • Metric spaces
      • Properties of metric spaces
      • Orthogonal systems
      • Convergence in metric spaces
    • Normed spaces
      • Properties of normed spaces
      • Convergence in normed spaces
    • Measure theory
      • Lebesgue measure and integration
      • Measurable functions and sets
      • Convergence (in measure, almost everywhere)
    • Compactness
    • Linear operators
    • Integral equations
    • Properties of sets
    • Generalized derivatives
    • Riemann-Stieltjes integral
  • Geometry
    • Planimetry
      • Transformations on the plane
      • Construction problems
      • Complex numbers in geometry
      • Various problems on the plane
      • Locus of points
    • Stereometry
      • Construction of sections
      • Various problems in the space
    • Affine transformations
  • Mathematical analysis
    • Gradient and directional derivative
    • Graphing functions using derivatives
    • Plotting functions
    • Fourier series
      • Trigonometric Fourier series
      • Fourier integral
    • Number series
    • Function extrema
    • Power series
    • Function properties
    • Derivatives and differentials
    • Functional sequences and series
    • Calculation of limits
    • Asymptotic analysis
  • Mathematical methods and models in economics
  • Mathematical physics
    • First order partial differential equations
    • Second order partial differential equations
      • d'Alembert method
      • Fourier method
      • With constant coefficients
      • With variable coefficients
      • Mixed problems
    • Convolution of functions
    • Nonlinear equations
    • Sturm-Liouville problem
    • Systems of equations in partial derivatives of the first order
  • Mathematical statistics
  • Numerical methods
    • Golden section search method
    • Least square method
    • Sweep method
    • Simple-Iteration method
    • Approximate calculation of integrals
    • Approximate solution of differential equations
    • Approximate numbers
    • Function Interpolation
    • Approximate solution of algebraic equations
  • Olympiad problems
    • Olympic geometry
    • Number theory
    • Olympic algebra
    • Various Olympiad problems
    • Inequalities
      • Algebraic
      • Geometric
    • Higher mathematics
  • Probability theory
    • One dimensional random variables and their characteristics
    • Theory of random processes
    • Markov chains
    • Queuing systems
    • Two-dimensional random variables and their characteristics
    • Definition and properties of probability
    • Limit theorems
  • Real integrals
    • Integrals of functions of a single variable
      • Indefinite integrals
      • Definite Integrals
      • Improper integrals
    • Double integrals
    • Triple integrals
    • The area of a region
    • Volume of a solid
    • Volume of a solid of revolution
    • Flux of the vector field
    • Surface integrals
    • Curvilinear integrals
    • Potential and solenoidal fields
    • Vector field circulation
    • Integrals depending on a parameter
  • Topology
  • USE problems
  • Variational calculus
Problem list Free problems

Attention! If a subsection is selected, then the search will be performed in it!

Problem: Find all elements of the group \( S_{n} \), permutable with the cycle \( \left(\alpha_{1} \alpha_{2} \ldots \alpha_{n}\right) \), where \( \left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right) \) - the permutation of numbers \( 1,2, \ldots, n \).

1.3.12 Permutation group

3.81 $

Problem: Prove that if the group \( G \) is non-commutative and \( |G|=8 \), then \( G \cong D_{4} \) or \( G \cong Q_{8} \).

1.3.13 Permutation group

4.57 $

Problem: Prove that Aut \( S_{3}=\operatorname{Inn} S_{3} \cong S_{3} \).

1.3.14 Permutation group

2.03 $

Problem: Prove that two permutations are conjugate in a group \( S_{n} \) if and only if they have the same cycle structure (i.e. their decomposition into products of independent cycles for any \( k \) contains the same number of cycles of length \( k \) ).

1.3.15 Permutation group

2.54 $

Problem: Find rational roots of a polynomial: \[ P(x)=-9 x^{4}+6 x^{3}-23 x^{2}+4 x+4 . \]

1.10.1 Polynomials

1.52 $

Problem: Find rational roots of a polynomial: \[ P(x)=2 x^{4}-5 x^{3}+4 x^{2}+3 x+9 . \]

1.10.2 Polynomials

1.52 $

Problem: Find GCD of polynomials \( f(x), g(x) \in \mathrm{F}_{2}[x] \), where \[ \begin{array}{l} f(x)=x^{7}+x^{5}+x^{4}+x+1, \\ g(x)=x^{8}+x^{6}+x^{5}+x^{4}+x^{3}+x^{2}+1 . \end{array} \]

1.10.3 Polynomials

2.54 $

Problem: The action of a stationary linear system is given as follows: \( \xi^{\prime \prime}+2 \xi^{\prime}+2 \xi=\eta^{\prime}+\eta \). The correlation function of the output is known: \( K_{\eta, \eta}(\tau)=\exp (-|\tau|), \tau \in(-\infty ;+\infty) \). Find the correlation function of the input.

15.1.24 Theory of random processes

6.35 $

Problem: Find the spectral density of the random function \( \xi(t) \), if \( K_{\eta, \eta}(\tau)=\exp (-2|\tau|) \). \[ \xi^{\prime \prime}+\xi=\eta^{\prime}+2 \eta \text {. } \]

15.1.25 Theory of random processes

3.05 $

Problem: \( \xi^{I V}+4 \xi=\eta^{\prime}+2 \eta \). The random function of the output is \( \eta(t) \). Find the spectral density of the input \( S_{\xi}(\omega) \), if \( K_{\eta, \eta}(\tau)=e^{-2|\tau|} \).

15.1.26 Theory of random processes

3.81 $

Problem: A spectral density of the random function \( \xi(t) \) is given: \[ S_{\xi}(\omega)=\frac{1}{\pi\left(4+\omega^{4}\right)} . \] Find the correlation function of this random function.

15.1.27 Theory of random processes

5.08 $

Problem: Vector \( X=(7 ; 7 ; 2) \) is given in the basis \( e=\left\{e_{1}, e_{2}, e_{3}\right\} \). Find the coordinates of \( X \) in the basis of \( e^{\prime}=\left\{e_{1}^{\prime}, e_{2}^{\prime}, e_{3}^{\prime}\right\} \), where \[ \left\{\begin{array}{l} e_{1}^{\prime}=e_{1}+e_{2}+\frac{6}{7} e_{3} \\ e_{2}^{\prime}=-6 e_{1}-e_{2} \\ e_{3}^{\prime}=-e_{1}+e_{2}+e_{3} \end{array}\right. \]

1.1.5 Vector Algebra

1.02 $

Problem: Find out whether a group is formed by the following set under the specified operation on elements: \{Integer numbers that are multiples of the given natural number \( n \), with respect to the additions\}.

1.6.19 Fields, Groups, Rings

1.27 $

Problem: Find the centre of the groups: a) \( 0(2) \) is a group of orthogonal matrices \( 2 \times 2 \), b) \( S U(2)=\left\{A \in G L_{2}(\mathbb{R})|| A \mid=1\right\} \).

1.6.20 Fields, Groups, Rings

6.35 $

Problem: Find all such finite groups \( G \) that the number of conjugacy classes in \( G \) is equal to 1,2 and 3 .

1.6.21 Fields, Groups, Rings

3.3 $

  • ‹
  • 1
  • 2
  • ...
  • 60
  • ...
  • 116
  • 117
  • ›

mathproblemsbank.net

Terms of use Privacy policy

© Copyright 2025, MathProblemsBank

Trustpilot
Order a solution
Order a solution to a problem?
Order a solution
Order a solution to a problem?
home.button.login