MathProblemsBank Math Problems Bank
  • Home
  • Forum
  • About Us
  • Contact Us
  • Login
  • Register
  • language
 MathProblemsBank banner

MathProblemsBank banner

Math Problems and solutions

Mathematics sections
  • Algebra
    • Vector Algebra
    • Determinant calculation
    • Permutation group
    • Matrix transformations
    • Linear transformations
    • Quadratic forms
    • Fields, Groups, Rings
    • Systems of algebraic equations
    • Linear spaces
    • Polynomials
    • Tensor calculus
    • Vector analysis
  • Analytic geometry
    • Curves of the 2-nd order
    • Surfaces of the 2-nd order
    • Lines on a plane
    • Line and plane in space
    • Tangents and normals
  • Complex analysis
    • Operations with complex numbers
    • Singular points and residues
    • Integral of a complex variable
    • Laplace transform
    • Conformal mappings
    • Analytic functions
    • Series with complex terms
    • Calculating integrals of a real variable using residues
  • Differential equations
    • Ordinary differential equations
      • First order differential equations
      • Second order differential equations
      • Higher order differential equations
      • Geometric and physical applications
    • Systems of ordinary differential equations
    • Stability
      • Stability of the equations
      • Stability of the systems of equations
    • Operating method
      • Differential equations
      • Systems of differential equations
  • Differential geometry
  • Discret mathematics
    • Boolean algebra
    • Set theory
    • Combinatorics
    • Graph theory
    • Binary relations
    • Propositional algebra
      • Propositional calculus
      • Sequent calculus
    • Predicate calculus
    • Theory of algorithms and formal languages
    • Automata theory
    • Recursive functions
  • Functional analysis
    • Metric spaces
      • Properties of metric spaces
      • Orthogonal systems
      • Convergence in metric spaces
    • Normed spaces
      • Properties of normed spaces
      • Convergence in normed spaces
    • Measure theory
      • Lebesgue measure and integration
      • Measurable functions and sets
      • Convergence (in measure, almost everywhere)
    • Compactness
    • Linear operators
    • Integral equations
    • Properties of sets
    • Generalized derivatives
    • Riemann-Stieltjes integral
  • Geometry
    • Planimetry
      • Transformations on the plane
      • Construction problems
      • Complex numbers in geometry
      • Various problems on the plane
      • Locus of points
    • Stereometry
      • Construction of sections
      • Various problems in the space
    • Affine transformations
  • Mathematical analysis
    • Gradient and directional derivative
    • Graphing functions using derivatives
    • Plotting functions
    • Fourier series
      • Trigonometric Fourier series
      • Fourier integral
    • Number series
    • Function extrema
    • Power series
    • Function properties
    • Derivatives and differentials
    • Functional sequences and series
    • Calculation of limits
    • Asymptotic analysis
  • Mathematical methods and models in economics
  • Mathematical physics
    • First order partial differential equations
    • Second order partial differential equations
      • d'Alembert method
      • Fourier method
      • With constant coefficients
      • With variable coefficients
      • Mixed problems
    • Convolution of functions
    • Nonlinear equations
    • Sturm-Liouville problem
    • Systems of equations in partial derivatives of the first order
  • Mathematical statistics
  • Numerical methods
    • Golden section search method
    • Least square method
    • Sweep method
    • Simple-Iteration method
    • Approximate calculation of integrals
    • Approximate solution of differential equations
    • Approximate numbers
    • Function Interpolation
    • Approximate solution of algebraic equations
  • Olympiad problems
    • Olympic geometry
    • Number theory
    • Olympic algebra
    • Various Olympiad problems
    • Inequalities
      • Algebraic
      • Geometric
    • Higher mathematics
  • Probability theory
    • One dimensional random variables and their characteristics
    • Theory of random processes
    • Markov chains
    • Queuing systems
    • Two-dimensional random variables and their characteristics
    • Definition and properties of probability
    • Limit theorems
  • Real integrals
    • Integrals of functions of a single variable
      • Indefinite integrals
      • Definite Integrals
      • Improper integrals
    • Double integrals
    • Triple integrals
    • The area of a region
    • Volume of a solid
    • Volume of a solid of revolution
    • Flux of the vector field
    • Surface integrals
    • Curvilinear integrals
    • Potential and solenoidal fields
    • Vector field circulation
    • Integrals depending on a parameter
  • Topology
  • USE problems
  • Variational calculus
Problem list Free problems

Attention! If a subsection is selected, then the search will be performed in it!

Problem: A weighted graph is defined by a matrix of arc lengths. Plot the graph. Find: a) the spanning tree of minimum weight; b) the shortest distance from vertex \( v_{4} \) to the remaining vertices of the graph, using Dijkstra's algorithm.

6.4.29 Graph theory

6.42 $

Problem: Prove the equalities. Illustrate using Euler-Venn diagrams. a) \( (A \cap B) \backslash(A \cap C)=(A \cap B) \backslash C \), b) \( (A \cup B) \times C=(A \times C) \cup(B \times C) \).

6.8.13 Set theory

1.28 $

Problem: Solve the Cauchy problem using Duhamel's formula: \[ y^{\prime \prime}+4 y=2 \tan x, y(0)=0, y^{\prime}(0)=0 \text {. } \]

8.2.1.10 Differential equations

3.85 $

Problem: Solve the equation \[ \int_{0}^{t} \sin (t-\tau) x(\tau) d \tau=x^{\prime \prime}+x+2 \cos t-4 \] under the given initial conditions \( x(0)=0, x^{\prime}(0)=0 \) (with respect to the function \( x(t) \) ).

8.2.1.11 Differential equations

2.57 $

Problem: Solve the differential equation, using the operational method. \[ y^{\prime \prime}+4 y=\cos t, \quad y(0)=1, \quad y^{\prime}(0)=0 . \]

8.2.1.12 Differential equations

2.06 $

Problem: Calculate and determine the absolute and relative errors of the result. \[ \begin{array}{l} \frac{\sqrt{a} \cdot b}{c}, \text { if } a=228.60 \pm 0.06, \\ b=86.40 \pm 0.02, \quad c=68.70 \pm 0.05 . \end{array} \]

14.1.3 Approximate numbers

2.06 $

Problem: Implement 3 steps of the golden-section search method in order to find the minimum value of the function \( y=x^{2}+2 x \) on the interval \( [-2 ; 0] \). Estimate the error of the obtained approximation.

14.2.2 Golden section search method

2.57 $

Problem: For the function \( f:[a, b] \rightarrow R \) a) find out if it's bounded; b) find the measure of the set of discontinuity points; c) find out if there is a proper or improper Riemann integral for it; d) find out if it's measurable \( f \); e) find the Lebesgue integral \( \int_{[a, b]} f(t) d t \), if it exists. \( a=-1, \quad b=1, \quad K \) is the Cantor set, \( f(t)=\left\{\begin{array}{cc}n, \quad t \in\left(\frac{1}{3^{n+1}}, \frac{1}{3^{n}}\right) \backslash K, n \in \mathbb{N}, \\ & {\left[e^{t^{2}}\right], \quad t \in K,} \\ \frac{1}{\sqrt{1+t}}, \quad & t \in\left([-1,0) \cup\left(\frac{1}{3}, 1\right)\right) \backslash K .\end{array}\right. \)

19.6.1.6 Lebesgue measure and integration

5.14 $

Problem: Let the functions \( f, g: \mathbb{R} \rightarrow \mathbb{R} \), be continuous. Prove that the set \( \{x \in \mathbb{R}: f(x)

19.7.13 Properties of sets

2.57 $

Problem: Establish a one-to-one correspondence between \( [-7 ; 4] \) and \( (-\infty ; 5] \).

19.7.14 Properties of sets

3.34 $

Problem: Prove the statement using mathematical induction: \( \left(n^{3}+11 n\right) \vdots 6 \), for all natural numbers \( n \geq 1 \).

6.6.33 Combinatorics

0 $

Problem: Find a sequence \( \left\{a_{n}\right\} \), satisfying the recurrence relation \( a_{n+2}-3 a_{n+1}+2 a_{n}=0 \) and the initial conditions \( a_{1}=3, a_{2}=7 \).

6.6.34 Combinatorics

1.03 $

Problem: How many positive three-digit numbers are there that are divisible by exactly one of these three numbers?

6.6.35 Combinatorics

2.57 $

Problem: Find the coefficients for \( a=x^{3} \cdot y^{2} \cdot z^{2}, b=x^{2} \cdot y^{2} \cdot z^{2} \) and \( c=x^{4} \cdot z^{4} \) in the expansion \( \left(2 x+3 y+5 z^{2}\right)^{6} \).

6.6.36 Combinatorics

2.06 $

30 Problem: Calculate the indefinite integral: \[ \int\left(\cos ^{2} x \sin x+x \sqrt{1+x^{2}}\right) d x \]

9.3.1.8 Indefinite integrals

0.77 $

  • ‹
  • 1
  • 2
  • ...
  • 108
  • ...
  • 116
  • 117
  • ›

mathproblemsbank.net

Terms of use Privacy policy

© Copyright 2025, MathProblemsBank

Trustpilot
Order a solution
Order a solution to a problem?
Order a solution
Order a solution to a problem?
home.button.login