MathProblemsBank Math Problems Bank
  • Home
  • Forum
  • About Us
  • Contact Us
  • Login
  • Register
  • language
 MathProblemsBank banner

MathProblemsBank banner

Math Problems and solutions

Mathematics sections
  • Algebra
    • Vector Algebra
    • Determinant calculation
    • Permutation group
    • Matrix transformations
    • Linear transformations
    • Quadratic forms
    • Fields, Groups, Rings
    • Systems of algebraic equations
    • Linear spaces
    • Polynomials
    • Tensor calculus
    • Vector analysis
  • Analytic geometry
    • Curves of the 2-nd order
    • Surfaces of the 2-nd order
    • Lines on a plane
    • Line and plane in space
    • Tangents and normals
  • Complex analysis
    • Operations with complex numbers
    • Singular points and residues
    • Integral of a complex variable
    • Laplace transform
    • Conformal mappings
    • Analytic functions
    • Series with complex terms
    • Calculating integrals of a real variable using residues
  • Differential equations
    • Ordinary differential equations
      • First order differential equations
      • Second order differential equations
      • Higher order differential equations
      • Geometric and physical applications
    • Systems of ordinary differential equations
    • Stability
      • Stability of the equations
      • Stability of the systems of equations
    • Operating method
      • Differential equations
      • Systems of differential equations
  • Differential geometry
  • Discret mathematics
    • Boolean algebra
    • Set theory
    • Combinatorics
    • Graph theory
    • Binary relations
    • Propositional algebra
      • Propositional calculus
      • Sequent calculus
    • Predicate calculus
    • Theory of algorithms and formal languages
    • Automata theory
    • Recursive functions
  • Functional analysis
    • Metric spaces
      • Properties of metric spaces
      • Orthogonal systems
      • Convergence in metric spaces
    • Normed spaces
      • Properties of normed spaces
      • Convergence in normed spaces
    • Measure theory
      • Lebesgue measure and integration
      • Measurable functions and sets
      • Convergence (in measure, almost everywhere)
    • Compactness
    • Linear operators
    • Integral equations
    • Properties of sets
    • Generalized derivatives
    • Riemann-Stieltjes integral
  • Geometry
    • Planimetry
      • Transformations on the plane
      • Construction problems
      • Complex numbers in geometry
      • Various problems on the plane
      • Locus of points
    • Stereometry
      • Construction of sections
      • Various problems in the space
    • Affine transformations
  • Mathematical analysis
    • Gradient and directional derivative
    • Graphing functions using derivatives
    • Plotting functions
    • Fourier series
      • Trigonometric Fourier series
      • Fourier integral
    • Number series
    • Function extrema
    • Power series
    • Function properties
    • Derivatives and differentials
    • Functional sequences and series
    • Calculation of limits
    • Asymptotic analysis
  • Mathematical methods and models in economics
  • Mathematical physics
    • First order partial differential equations
    • Second order partial differential equations
      • d'Alembert method
      • Fourier method
      • With constant coefficients
      • With variable coefficients
      • Mixed problems
    • Convolution of functions
    • Nonlinear equations
    • Sturm-Liouville problem
    • Systems of equations in partial derivatives of the first order
  • Mathematical statistics
  • Numerical methods
    • Golden section search method
    • Least square method
    • Sweep method
    • Simple-Iteration method
    • Approximate calculation of integrals
    • Approximate solution of differential equations
    • Approximate numbers
    • Function Interpolation
    • Approximate solution of algebraic equations
  • Olympiad problems
    • Olympic geometry
    • Number theory
    • Olympic algebra
    • Various Olympiad problems
    • Inequalities
      • Algebraic
      • Geometric
    • Higher mathematics
  • Probability theory
    • One dimensional random variables and their characteristics
    • Theory of random processes
    • Markov chains
    • Queuing systems
    • Two-dimensional random variables and their characteristics
    • Definition and properties of probability
    • Limit theorems
  • Real integrals
    • Integrals of functions of a single variable
      • Indefinite integrals
      • Definite Integrals
      • Improper integrals
    • Double integrals
    • Triple integrals
    • The area of a region
    • Volume of a solid
    • Volume of a solid of revolution
    • Flux of the vector field
    • Surface integrals
    • Curvilinear integrals
    • Potential and solenoidal fields
    • Vector field circulation
    • Integrals depending on a parameter
  • Topology
  • USE problems
  • Variational calculus
Problem list Free problems

Attention! If a subsection is selected, then the search will be performed in it!

(3) Problem: Find the total charge on the surface \( S \), if the surface charge density is equal to \( f(x, y, z) \) : \[ S: z=\sqrt{4-x^{2}-y^{2}}, \quad f(x, y, z)=x^{2} . \]

9.8.11 Surface integrals

3.34 $

Problem: Is the vector field \( \vec{a}=x z^{2} \vec{\imath}+(y-1) \vec{\jmath}+x^{2} z \vec{k} \) : a) potential. If yes, find its potential, b) solenoidal?

9.9.4 Potential and solenoidal fields

3.85 $

3) Problem: Calculate the area of a figure bounded by the lemniscate \( \rho^{2}=2 \cos 2 \varphi \) and the circle \( \rho=1 \), and located outside the circle.

9.7.13 The area of a region

2.57 $

(3) Problem: Find the area of the surface formed by the rotation of the cardioid \[ x=a(2 \cos t-\cos 2 t), \quad y=a(2 \sin t-\sin 2 t) \] around the axis \( O X(0 \leq t \leq \pi) \).

9.7.14 The area of a region

2.06 $

3) Problem: Find the area of the figure, formed by the graphs of the functions \( y=x^{2}, y=8-x^{2} \).

9.7.15 The area of a region

0 $

as Problem: Find the area of the region bounded by the graphs of the functions: \[ y=e^{x}-1, \quad y=e^{2 x}-3, \quad x=0 . \]

9.7.16 The area of a region

1.28 $

Problem: Find the singular points of the function, indicate their type and find the residues in them: \[ f(z)=\frac{1}{z^{4}+1} e^{\frac{1}{z+1}}+\frac{\tan ^{2} z}{z} . \]

10.2.5 Singular points and residues

3.08 $

Problem: Find the singular points of the function and indicate their type: \[ f(z)=\frac{1}{z^{2}-1} \sin \frac{1}{2 z+1}+\frac{1}{e^{z}+i} . \]

10.2.6 Singular points and residues

3.08 $

Problem: Solve the equation: \[ f(t)=\int_{0}^{t} \frac{\operatorname{ch} \tau-1}{\tau} d \tau . \]

10.4.10 Laplace transform

2.06 $

Problem: Find the Laplace transform \( F(p) \) by the given signal: \[ f(t)=\int_{0}^{t} \frac{\cos \beta \tau-\cos \alpha \tau}{\tau} d \tau . \]

10.4.11 Laplace transform

2.06 $

Problem: Let function \( f_{1}(z), f_{2}(z) \) are analytic in a domain \( D \subset \mathbb{C} \) of the complex plane, and they coincide at \( E \subset \) \( D\left(f_{1}(z) \equiv f_{2}(z), \forall z \in E\right) \) and let \( E \) have at least one limit point in \( D \), then \( f_{1}(z) \equiv f_{2}(z), \forall z \in D \).

10.6.16 Analytic functions

5.14 $

Problem: a) Point \( z_{0} \in \mathbb{C} \) is a zero of multiplicity \( m \) of the analytic function in \( z_{0} \) of function \( f(z) \) only if \( f(z) \) is represented as \( f(z)=\left(z-z_{0}\right)^{m} \cdot \varphi(z) \), where \( \varphi(z) \), is analytic in \( z_{0} \), and \( \varphi\left(z_{0}\right) \neq 0 \). b) Let the zeros of function \( f(z) \) be \( z_{1}, z_{2}, \ldots, z_{n} \in \mathbb{C} \), with orders \( m_{1}, m_{2}, \ldots, m_{n} \in \mathbb{N} \), respectively, and \( f(z) \) is analytic in points \( z_{1}, z_{2}, \ldots, z_{n}\left(z_{i} \neq z_{j}, i \neq j\right) \). Then \( f(z) \) is represented in the form of \( f(z)=\left(z-z_{1}\right)^{m_{1}}(z- \) \( \left.-z_{2}\right)^{m_{2}} \cdot \ldots \cdot\left(z-z_{n}\right)^{m_{n}} \cdot \varphi(z) \), where \( \varphi\left(z_{i}\right) \neq 0, i=\overline{1, n} \) and \( \varphi(z) \) is analytic in points \( z_{1}, \ldots, z_{n} \).

10.6.17 Analytic functions

7.71 $

Problem: Calculate the integral using residues: \[ \int_{-\infty}^{\infty} \frac{x^{2}}{\left(x^{2}+4\right)\left(x^{2}+9\right)} d x \text {. } \]

10.7.19 Calculating integrals of a real variable using residues

2.57 $

Problem: Calculate the integral using residues: \[ \int_{-\infty}^{\infty} \frac{1}{x^{2}+4 x+29} d x \text {. } \]

10.7.20 Calculating integrals of a real variable using residues

2.06 $

Problem: Find the values of \( \tan \left(\frac{\pi}{6}+\frac{i}{2} \ln 3\right) \).

10.3.7 Operations with complex numbers

1.28 $

  • ‹
  • 1
  • 2
  • ...
  • 111
  • ...
  • 116
  • 117
  • ›

mathproblemsbank.net

Terms of use Privacy policy

© Copyright 2025, MathProblemsBank

Trustpilot
Order a solution
Order a solution to a problem?
Order a solution
Order a solution to a problem?
home.button.login