MathProblemsBank Math Problems Bank
  • Home
  • Forum
  • About Us
  • Contact Us
  • Login
  • Register
  • language
 MathProblemsBank banner

MathProblemsBank banner

Math Problems and solutions

Mathematics sections
  • Algebra
    • Vector Algebra
    • Determinant calculation
    • Permutation group
    • Matrix transformations
    • Linear transformations
    • Quadratic forms
    • Fields, Groups, Rings
    • Systems of algebraic equations
    • Linear spaces
    • Polynomials
    • Tensor calculus
    • Vector analysis
  • Analytic geometry
    • Curves of the 2-nd order
    • Surfaces of the 2-nd order
    • Lines on a plane
    • Line and plane in space
    • Tangents and normals
  • Complex analysis
    • Operations with complex numbers
    • Singular points and residues
    • Integral of a complex variable
    • Laplace transform
    • Conformal mappings
    • Analytic functions
    • Series with complex terms
    • Calculating integrals of a real variable using residues
  • Differential equations
    • Ordinary differential equations
      • First order differential equations
      • Second order differential equations
      • Higher order differential equations
      • Geometric and physical applications
    • Systems of ordinary differential equations
    • Stability
      • Stability of the equations
      • Stability of the systems of equations
    • Operating method
      • Differential equations
      • Systems of differential equations
  • Differential geometry
  • Discret mathematics
    • Boolean algebra
    • Set theory
    • Combinatorics
    • Graph theory
    • Binary relations
    • Propositional algebra
      • Propositional calculus
      • Sequent calculus
    • Predicate calculus
    • Theory of algorithms and formal languages
    • Automata theory
    • Recursive functions
  • Functional analysis
    • Metric spaces
      • Properties of metric spaces
      • Orthogonal systems
      • Convergence in metric spaces
    • Normed spaces
      • Properties of normed spaces
      • Convergence in normed spaces
    • Measure theory
      • Lebesgue measure and integration
      • Measurable functions and sets
      • Convergence (in measure, almost everywhere)
    • Compactness
    • Linear operators
    • Integral equations
    • Properties of sets
    • Generalized derivatives
    • Riemann-Stieltjes integral
  • Geometry
    • Planimetry
      • Transformations on the plane
      • Construction problems
      • Complex numbers in geometry
      • Various problems on the plane
      • Locus of points
    • Stereometry
      • Construction of sections
      • Various problems in the space
    • Affine transformations
  • Mathematical analysis
    • Gradient and directional derivative
    • Graphing functions using derivatives
    • Plotting functions
    • Fourier series
      • Trigonometric Fourier series
      • Fourier integral
    • Number series
    • Function extrema
    • Power series
    • Function properties
    • Derivatives and differentials
    • Functional sequences and series
    • Calculation of limits
    • Asymptotic analysis
  • Mathematical methods and models in economics
  • Mathematical physics
    • First order partial differential equations
    • Second order partial differential equations
      • d'Alembert method
      • Fourier method
      • With constant coefficients
      • With variable coefficients
      • Mixed problems
    • Convolution of functions
    • Nonlinear equations
    • Sturm-Liouville problem
    • Systems of equations in partial derivatives of the first order
  • Mathematical statistics
  • Numerical methods
    • Golden section search method
    • Least square method
    • Sweep method
    • Simple-Iteration method
    • Approximate calculation of integrals
    • Approximate solution of differential equations
    • Approximate numbers
    • Function Interpolation
    • Approximate solution of algebraic equations
  • Olympiad problems
    • Olympic geometry
    • Number theory
    • Olympic algebra
    • Various Olympiad problems
    • Inequalities
      • Algebraic
      • Geometric
    • Higher mathematics
  • Probability theory
    • One dimensional random variables and their characteristics
    • Theory of random processes
    • Markov chains
    • Queuing systems
    • Two-dimensional random variables and their characteristics
    • Definition and properties of probability
    • Limit theorems
  • Real integrals
    • Integrals of functions of a single variable
      • Indefinite integrals
      • Definite Integrals
      • Improper integrals
    • Double integrals
    • Triple integrals
    • The area of a region
    • Volume of a solid
    • Volume of a solid of revolution
    • Flux of the vector field
    • Surface integrals
    • Curvilinear integrals
    • Potential and solenoidal fields
    • Vector field circulation
    • Integrals depending on a parameter
  • Topology
  • USE problems
  • Variational calculus
Problem list Free problems

Attention! If a subsection is selected, then the search will be performed in it!

Problem: Find the solution of the Cauchy problem for the string oscillation equation: \[ \begin{array}{l} V_{t t}^{\prime \prime}=9 V_{x x}^{\prime \prime}, \quad V(x, 0)=\left\{\begin{array}{l} \frac{3 x}{40}, \quad 0 \leq x \leq 4 \\ \frac{3(8-x)}{40}, \quad 4 \leq x \leq 8 \end{array},\right. \\ V(0, t)=V(8, t)=0, \quad t \in(0,+\infty) . \end{array} \]

11.5.2.22 Fourier method

7.63 $

Problem: Solve the problem of string oscillations, fixed at the ends, by the method of separation of variables \( x \) (the Fourier method). \[ \begin{array}{l} \frac{\partial^{2} u}{\partial t^{2}}=16 \frac{\partial^{2} u}{\partial x^{2}}, \quad u(0, t)=u(3, t)=0 \\ u(x, 0)=\frac{8}{9}\left(3 x-x^{2}\right),\left.\quad \frac{\partial u}{\partial t}\right|_{t=0}=0 \end{array} \]

11.5.2.23 Fourier method

6.36 $

Problem: Solve the problem of string oscillations, fixed at the ends, by the method of separation of variables (the Fourier method). \[ \begin{array}{l} \frac{\partial^{2} u}{\partial t^{2}}=25 \frac{\partial^{2} u}{\partial x^{2}}, \quad u(0, t)=u(8, t)=0, \\ u(x, 0)=0,\left.\quad \frac{\partial u}{\partial t}\right|_{t=0}=\left\{\begin{array}{ll} x, & 0 \leq x<4 \\ 8-x, & 4 \leq x \leq 8 \end{array}\right. \end{array} \]

11.5.2.24 Fourier method

6.36 $

Problem: 1) Find the Radon-Nikodym density with respect to the Lebesgue measure for the signed measure, built from the function \( F(x)=\left\{\begin{array}{l}0, \quad \text { when } x<0 \\ \tan ^{-1} x, \quad \text { when } 0 \leq x<1 \\ \frac{\pi}{4} x, \quad \text { when } 1 \leq x<4 \\ \pi, \quad \text { when } 4 \leq x\end{array}\right. \) 2) Find the Jordan expansion for the signed measure, built from the function \( F(x)=\left\{\begin{array}{l}0, \quad \text { when } x<0 \\ \tan ^{-1} x, \quad \text { when } 0 \leq x<1 \\ \frac{\pi}{4} x, \quad \text { when } 1 \leq x<4 \\ \pi, \quad \text { when } 4 \leq x\end{array}\right. \) What sets can be taken as \( X^{+}, X^{-} \)in Hahn decomposition??

19.6.1.2 Lebesgue measure and integration

7.63 $

Problem: The random function has the form \( X(t)=V t^{2}(t>0) \), where \( V \) is a random variable, evenly distributed on \( [0 ; 3] \). Find the onedimensional distribution function and onedimensional density of this process.

15.1.28 Theory of random processes

3.05 $

Problem: Let the random function \( X(t) \) have the characteristics \( \quad m_{x}(t)=1, K_{x}(t, s)=e^{-(t-s)^{2}} \). Find the characteristics of the random functions \[ \begin{array}{l} Y=1+t-x, Z=t^{2}+x^{\prime} \sin t, U=t+x^{\prime \prime}, \\ V=\int_{0}^{t}(1+t) X(t) d t . \end{array} \] Find out wheter the functions \( X, Y, Z, U, V \) are stationary.

15.1.29 Theory of random processes

5.09 $

Problem: The spectral density of the stationary random function \( X(t) \) is given: \[ S_{X}(\omega)=\frac{1}{\alpha \sqrt{\pi}} \cdot e^{-\frac{\omega^{2}}{4 \alpha^{2}}} . \] Find the correlation function of \( X(t) \).

15.1.30 Theory of random processes

3.05 $

Problem: Find one-dimensional density, expected value and the dispersion of a random harmonic oscillation \( X(t)=\alpha \cos (\omega t+\phi) \), where \( \alpha, \omega \) are constant, \( \phi \) is a random phase, distributed evenly on \( [-\pi ; \pi] \).

15.1.31 Theory of random processes

3.81 $

Problem: The correlation function \( K_{X}(\tau) \) of the stationary random function \( X(t) \) is given: \( K_{X}(\tau)=\sigma^{2} e^{-\alpha^{2} \tau^{2}} \). Find the correlation function of the random function \( Y(t)=a X^{\prime}(t) \).

15.1.32 Theory of random processes

0 $

Problem: The random function \( X(t)=t+X_{1} \cos t+ \) \( +X_{2} \sin t \) is given, where the random vector \( \left(\mathrm{X}_{1}, \mathrm{X}_{2}\right) \) has the expected value \( (-1 / 2 ; 1) \) and the correlation matrix \( \left(\begin{array}{cc}3 & -2 \\ -2 & 2,9\end{array}\right) \). Construct a canonical expansion of the process, find its expected value, dispersion and correlation function:

15.1.33 Theory of random processes

3.81 $

Problem: The spectral density of the stationary random function is given in the form: \( S_{X}(\omega)=\frac{D X}{\pi\left(\alpha^{2}+\omega^{2}\right)} \), where \( D X- \) dispersion of \( X \). Find the correlation function \( K_{X}(\tau) \).

15.1.34 Theory of random processes

3.05 $

Problem: Find the expected value \( m_{Y}(t) \) and the spectral density \( S_{Y}(\omega) \) of the solutions of the equation \( Y^{\prime \prime}(t)+2 Y^{\prime}(t)+2 Y(t)=X^{\prime}(t)+X(t), \quad \) where \( X(t) \) is the stationary function, and \( m_{X}(t)=1 \), \( K_{X}(\tau)=e^{-|\tau|}(1+|\tau|) \).

15.1.35 Theory of random processes

3.05 $

Problem: Find the Laplace transform of the function: \[ f(t)=\left\{\begin{array}{ll} 0, & t<0 \\ -2, & 0 \leq t<2 \\ 0, & 2 \leq t<3 \\ \frac{1}{2}, & 3 \leq t<5 \\ 0, & 5 \geq t \end{array}\right. \]

10.4.2 Laplace transform

1.02 $

Problem: Find the Laplace transform of the function: \[ F(P)=\frac{2 P}{\left(P^{2}+4 P+8\right)^{2}} . \]

10.4.3 Laplace transform

2.03 $

Problem: Solve the differential equation, using the operational method: \[ y^{\prime \prime}(t)+5 y(t)=e^{3 t}, \quad y(0)=y^{\prime}(0)=0 . \]

8.2.1.5 Differential equations

2.03 $

  • ‹
  • 1
  • 2
  • ...
  • 68
  • ...
  • 116
  • 117
  • ›

mathproblemsbank.net

Terms of use Privacy policy

© Copyright 2025, MathProblemsBank

Trustpilot
Order a solution
Order a solution to a problem?
Order a solution
Order a solution to a problem?
home.button.login