MathProblemsBank Math Problems Bank
  • Home
  • Forum
  • About Us
  • Contact Us
  • Login
  • Register
  • language
 MathProblemsBank banner

MathProblemsBank banner

Math Problems and solutions

Mathematics sections
  • Algebra
    • Vector Algebra
    • Determinant calculation
    • Permutation group
    • Matrix transformations
    • Linear transformations
    • Quadratic forms
    • Fields, Groups, Rings
    • Systems of algebraic equations
    • Linear spaces
    • Polynomials
    • Tensor calculus
    • Vector analysis
  • Analytic geometry
    • Curves of the 2-nd order
    • Surfaces of the 2-nd order
    • Lines on a plane
    • Line and plane in space
    • Tangents and normals
  • Complex analysis
    • Operations with complex numbers
    • Singular points and residues
    • Integral of a complex variable
    • Laplace transform
    • Conformal mappings
    • Analytic functions
    • Series with complex terms
    • Calculating integrals of a real variable using residues
  • Differential equations
    • Ordinary differential equations
      • First order differential equations
      • Second order differential equations
      • Higher order differential equations
      • Geometric and physical applications
    • Systems of ordinary differential equations
    • Stability
      • Stability of the equations
      • Stability of the systems of equations
    • Operating method
      • Differential equations
      • Systems of differential equations
  • Differential geometry
  • Discret mathematics
    • Boolean algebra
    • Set theory
    • Combinatorics
    • Graph theory
    • Binary relations
    • Propositional algebra
      • Propositional calculus
      • Sequent calculus
    • Predicate calculus
    • Theory of algorithms and formal languages
    • Automata theory
    • Recursive functions
  • Functional analysis
    • Metric spaces
      • Properties of metric spaces
      • Orthogonal systems
      • Convergence in metric spaces
    • Normed spaces
      • Properties of normed spaces
      • Convergence in normed spaces
    • Measure theory
      • Lebesgue measure and integration
      • Measurable functions and sets
      • Convergence (in measure, almost everywhere)
    • Compactness
    • Linear operators
    • Integral equations
    • Properties of sets
    • Generalized derivatives
    • Riemann-Stieltjes integral
  • Geometry
    • Planimetry
      • Transformations on the plane
      • Construction problems
      • Complex numbers in geometry
      • Various problems on the plane
      • Locus of points
    • Stereometry
      • Construction of sections
      • Various problems in the space
    • Affine transformations
  • Mathematical analysis
    • Gradient and directional derivative
    • Graphing functions using derivatives
    • Plotting functions
    • Fourier series
      • Trigonometric Fourier series
      • Fourier integral
    • Number series
    • Function extrema
    • Power series
    • Function properties
    • Derivatives and differentials
    • Functional sequences and series
    • Calculation of limits
    • Asymptotic analysis
  • Mathematical methods and models in economics
  • Mathematical physics
    • First order partial differential equations
    • Second order partial differential equations
      • d'Alembert method
      • Fourier method
      • With constant coefficients
      • With variable coefficients
      • Mixed problems
    • Convolution of functions
    • Nonlinear equations
    • Sturm-Liouville problem
    • Systems of equations in partial derivatives of the first order
  • Mathematical statistics
  • Numerical methods
    • Golden section search method
    • Least square method
    • Sweep method
    • Simple-Iteration method
    • Approximate calculation of integrals
    • Approximate solution of differential equations
    • Approximate numbers
    • Function Interpolation
    • Approximate solution of algebraic equations
  • Olympiad problems
    • Olympic geometry
    • Number theory
    • Olympic algebra
    • Various Olympiad problems
    • Inequalities
      • Algebraic
      • Geometric
    • Higher mathematics
  • Probability theory
    • One dimensional random variables and their characteristics
    • Theory of random processes
    • Markov chains
    • Queuing systems
    • Two-dimensional random variables and their characteristics
    • Definition and properties of probability
    • Limit theorems
  • Real integrals
    • Integrals of functions of a single variable
      • Indefinite integrals
      • Definite Integrals
      • Improper integrals
    • Double integrals
    • Triple integrals
    • The area of a region
    • Volume of a solid
    • Volume of a solid of revolution
    • Flux of the vector field
    • Surface integrals
    • Curvilinear integrals
    • Potential and solenoidal fields
    • Vector field circulation
    • Integrals depending on a parameter
  • Topology
  • USE problems
  • Variational calculus
Problem list Free problems

Attention! If a subsection is selected, then the search will be performed in it!

Problem: What is the probability that the sum of \( n \) independent random variables, uniformly distributed in [0,1], will not exceed 1.

15.7.3 Limit theorems

3.05 $

Problem: Find the gradient of the scalar field \( u(x, y, z)= \) \( z e^{x^{2}+y^{2}+z^{2}} \) at an arbitrary point and at the point \( M_{0}(0,0,0) \). For the resulting vector field \( \bar{a}= \) \( \Delta u(x, y, z) \) find \( \operatorname{div} \bar{a} \) and \( \operatorname{rot} \bar{a} \) at the point \( M_{0} \).

1.12.1 Vector analysis

3.81 $

Problem: Show that the gradient field of the scalar field \( \varphi=6 x^{3} y-2 x y^{4}+z^{4} x^{2} y \) is irrotational.

1.12.3 Vector analysis

0 $

Problem: Find the vector lines of the field \( \vec{a}=(z-y) \vec{\imath}+ \) \( +(z+1) \vec{\jmath}+(y+1) \vec{k} \).

1.12.4 Vector analysis

1.27 $

Problem: Calculate the gradient of the scalar field \( \varphi(x, y, z) \), find and draw level surfaces \[ \varphi=0 ; \pm 1 ; \pm 3, \quad \text { where } \quad \varphi(x, y, z)=\frac{12 z}{x^{2}+y^{2}} . \]

1.12.5 Vector analysis

2.54 $

Problem: Given a vector field \( \vec{a}=(2 x \vec{\imath}+3 y \vec{\jmath}+z \vec{k}) \cos |\vec{r}| \). Calculate scalar and vector products: 1. \( (\nabla \cdot \vec{a}), 2 \). \( [\nabla \times \vec{a}] \).

1.12.6 Vector analysis

3.81 $

Problem: Calculate the gradient of the scalar field \( \varphi(x, y, z) \), find and draw level surfaces \[ \varphi=0 ; \pm 1 ; \pm 3, \quad \text { where } \quad \varphi(x, y, z)=\frac{3 y^{2}+x}{z^{2}} . \]

1.12.7 Vector analysis

2.54 $

Problem: Find the vector lines of gradient field of scalar function: \[ \varphi=y+y z-\frac{1}{2} x^{2}-z . \]

1.12.8 Vector analysis

2.54 $

Problem: For an arbitrary scalar field \( u \) prove that \( \operatorname{div}(\operatorname{grad} u)=\Delta u \).

1.12.9 Vector analysis

1.27 $

Problem: For any scalar field \( u \) calculate: a) \( \operatorname{div}(u \operatorname{grad} u) \), b) \( \operatorname{rot}(u \operatorname{grad} u) \).

1.12.10 Vector analysis

3.05 $

Problem: Are the vectors \( \overrightarrow{c_{1}} \) and \( \overrightarrow{c_{2}} \), constructed from the vectors \( \vec{a} \) and \( \vec{b} \) collinear? \[ \begin{array}{l} \vec{a}=\{-2 ; 7 ;-1\}, \quad \vec{b}=\{-3 ; 5 ; 2\}, \\ \overrightarrow{c_{1}}=2 \vec{a}+3 \vec{b}, \quad \overrightarrow{c_{2}}=3 \vec{a}+2 \vec{b} . \end{array} \]

1.1.10 Vector Algebra

1.02 $

Problem: Find the cosine of the angle between the vectors \( \overrightarrow{A B} \) and \( \overrightarrow{A C} \). \[ A(6 ; 2 ;-3), \quad B(6 ; 3 ;-2), \quad C(7 ; 3 ;-3) \text {. } \]

1.1.11 Vector Algebra

0.76 $

Problem: Calculate the area of the parallelogram formed by the vectors \( \vec{a} \) and \( \vec{b} \). \[ \begin{array}{l} \vec{a}=7 \vec{p}+\vec{q}, \quad \vec{b}=\vec{p}-3 \vec{g}, \quad|\vec{p}|=3, \\ |\vec{q}|=1, \quad\left(\widehat{\vec{p}, \vec{q})}=\frac{3 \pi}{4} .\right. \end{array} \]

1.1.12 Vector Algebra

2.03 $

Problem: Find the decomposition of the vector \( \vec{v} \) into the vectors \( \vec{p}, \vec{q} \) and \( \vec{r} \). \[ \begin{array}{l} \vec{v}=\{8 ; 9 ; 4\}, \quad \vec{p}=\{1 ; 0 ; 1\}, \\ \vec{q}=\{0 ;-2 ; 1\}, \quad \vec{r}=\{1 ; 3 ; 0\} . \end{array} \]

1.1.13 Vector Algebra

1.02 $

Problem: Are the vectors \( \overrightarrow{c_{1}} \) and \( \overrightarrow{c_{2}} \), formed by the vectors \( \vec{a} \) and \( \vec{b} \) collinear? \[ \begin{array}{ll} \vec{a}=\{-1 ; 2 ;-1\}, & \vec{b}=\{2 ;-7 ; 1\}, \\ \overrightarrow{c_{1}}=6 \vec{a}-2 \vec{b}, & \overrightarrow{c_{2}}=\vec{b}-3 \vec{a} . \end{array} \]

1.1.14 Vector Algebra

0 $

  • ‹
  • 1
  • 2
  • ...
  • 94
  • ...
  • 116
  • 117
  • ›

mathproblemsbank.net

Terms of use Privacy policy

© Copyright 2025, MathProblemsBank

Trustpilot
Order a solution
Order a solution to a problem?
Order a solution
Order a solution to a problem?
home.button.login