MathProblemsBank Math Problems Bank
  • Home
  • Forum
  • About Us
  • Contact Us
  • Login
  • Register
  • language
 MathProblemsBank banner

MathProblemsBank banner

Math Problems and solutions

Mathematics sections
  • Algebra
    • Vector Algebra
    • Determinant calculation
    • Permutation group
    • Matrix transformations
    • Linear transformations
    • Quadratic forms
    • Fields, Groups, Rings
    • Systems of algebraic equations
    • Linear spaces
    • Polynomials
    • Tensor calculus
    • Vector analysis
  • Analytic geometry
    • Curves of the 2-nd order
    • Surfaces of the 2-nd order
    • Lines on a plane
    • Line and plane in space
    • Tangents and normals
  • Complex analysis
    • Operations with complex numbers
    • Singular points and residues
    • Integral of a complex variable
    • Laplace transform
    • Conformal mappings
    • Analytic functions
    • Series with complex terms
    • Calculating integrals of a real variable using residues
  • Differential equations
    • Ordinary differential equations
      • First order differential equations
      • Second order differential equations
      • Higher order differential equations
      • Geometric and physical applications
    • Systems of ordinary differential equations
    • Stability
      • Stability of the equations
      • Stability of the systems of equations
    • Operating method
      • Differential equations
      • Systems of differential equations
  • Differential geometry
  • Discret mathematics
    • Boolean algebra
    • Set theory
    • Combinatorics
    • Graph theory
    • Binary relations
    • Propositional algebra
      • Propositional calculus
      • Sequent calculus
    • Predicate calculus
    • Theory of algorithms and formal languages
    • Automata theory
    • Recursive functions
  • Functional analysis
    • Metric spaces
      • Properties of metric spaces
      • Orthogonal systems
      • Convergence in metric spaces
    • Normed spaces
      • Properties of normed spaces
      • Convergence in normed spaces
    • Measure theory
      • Lebesgue measure and integration
      • Measurable functions and sets
      • Convergence (in measure, almost everywhere)
    • Compactness
    • Linear operators
    • Integral equations
    • Properties of sets
    • Generalized derivatives
    • Riemann-Stieltjes integral
  • Geometry
    • Planimetry
      • Transformations on the plane
      • Construction problems
      • Complex numbers in geometry
      • Various problems on the plane
      • Locus of points
    • Stereometry
      • Construction of sections
      • Various problems in the space
    • Affine transformations
  • Mathematical analysis
    • Gradient and directional derivative
    • Graphing functions using derivatives
    • Plotting functions
    • Fourier series
      • Trigonometric Fourier series
      • Fourier integral
    • Number series
    • Function extrema
    • Power series
    • Function properties
    • Derivatives and differentials
    • Functional sequences and series
    • Calculation of limits
    • Asymptotic analysis
  • Mathematical methods and models in economics
  • Mathematical physics
    • First order partial differential equations
    • Second order partial differential equations
      • d'Alembert method
      • Fourier method
      • With constant coefficients
      • With variable coefficients
      • Mixed problems
    • Convolution of functions
    • Nonlinear equations
    • Sturm-Liouville problem
    • Systems of equations in partial derivatives of the first order
  • Mathematical statistics
  • Numerical methods
    • Golden section search method
    • Least square method
    • Sweep method
    • Simple-Iteration method
    • Approximate calculation of integrals
    • Approximate solution of differential equations
    • Approximate numbers
    • Function Interpolation
    • Approximate solution of algebraic equations
  • Olympiad problems
    • Olympic geometry
    • Number theory
    • Olympic algebra
    • Various Olympiad problems
    • Inequalities
      • Algebraic
      • Geometric
    • Higher mathematics
  • Probability theory
    • One dimensional random variables and their characteristics
    • Theory of random processes
    • Markov chains
    • Queuing systems
    • Two-dimensional random variables and their characteristics
    • Definition and properties of probability
    • Limit theorems
  • Real integrals
    • Integrals of functions of a single variable
      • Indefinite integrals
      • Definite Integrals
      • Improper integrals
    • Double integrals
    • Triple integrals
    • The area of a region
    • Volume of a solid
    • Volume of a solid of revolution
    • Flux of the vector field
    • Surface integrals
    • Curvilinear integrals
    • Potential and solenoidal fields
    • Vector field circulation
    • Integrals depending on a parameter
  • Topology
  • USE problems
  • Variational calculus
Problem list Free problems

Attention! If a subsection is selected, then the search will be performed in it!

Problem: Find the cosine of the angle between the vectors \( \overrightarrow{A B} \) and \( \overrightarrow{A C} \). \[ A(0 ; 2 ;-4), \quad B(8 ; 2 ; 2), \quad C(6 ; 2 ; 4) \text {. } \]

1.1.15 Vector Algebra

0 $

Problem: Calculate the area of the parallelogram formed by the vectors \( \vec{a} \) and \( \vec{b} \). \[ \begin{array}{l} \vec{a}=3 \vec{p}+\vec{q}, \quad \vec{b}=\vec{p}-3 \vec{q}, \quad|\vec{p}|=7, \\ |\vec{q}|=2, \quad(\widehat{\vec{p} ; \vec{q}})=\frac{\pi}{4} . \end{array} \]

1.1.16 Vector Algebra

2.03 $

Problem: Write the decomposition of the vector \( \vec{v} \) into the vectors \( \vec{p}, \vec{q} \) and \( \vec{r} \). \[ \begin{array}{ll} \vec{v}=\{-1 ; 7 ; 0\}, & \vec{p}=\{0 ; 3 ; 1\}, \\ \vec{q}=\{1 ;-1 ; 2\}, & \vec{r}=\{2 ;-1 ; 0\} . \end{array} \]

1.1.17 Vector Algebra

1.02 $

Problem: Prove equalities using the properties of set operations and definitions of operations. Illustrate using Euler-Venn diagrams. a) \( A \cup(B \backslash C)=(A \cup B) \backslash(C \backslash A) \), b) \( A \times(B \cap C)=(A \times B) \backslash(A \times(B \backslash C)) \).

6.8.8 Set theory

1.52 $

Problem: Prove the identity: \( \overline{B \backslash A}=\bar{B} \cup A \).

6.8.9 Set theory

0 $

Problem: Prove equality using the properties of set operations and definitions of operations. Illustrate using Euler-Venn diagrams. \[ (A \cup B) \backslash(A \cap C)=(A \cap \bar{C}) \cup(\bar{A} \cap B) \text {. } \]

6.8.10 Set theory

1.52 $

Problem: Prove equalities using the properties of set operations and definitions of operations. \[ C \subseteq D \Rightarrow A \times C \subseteq B \times D \text {. } \]

6.8.11 Set theory

0 $

Problem: Prove equalities using the properties of set operations and definitions of operations. Illustrate using EulerVenn diagrams. a) \( A \backslash B=A \Delta(A \cap B) \), b) \( (A \cup C) \times B=(C \times B) \cup((A \cap C) \times B) \cup(A \times B) \).

6.8.12 Set theory

1.27 $

Problem: Find the Laplace transform of the signal by the given graph:

10.4.8 Laplace transform

2.54 $

Problem: Find the signal of the Laplace transform: \[ \frac{p-8}{(p+1)\left(p^{2}+2 p+10\right)} \text {. } \]

10.4.9 Laplace transform

2.03 $

Problem: Determine the circle of convergence of the given series. Find out if the series converges at the given point \( z_{1}, z_{2}, z_{3} \) (if yes, then how: absolutely or conditionally). Make the drawing. \begin{tabular}{|c|c|c|c|} \hline Series & \( z_{1} \) & \( z_{2} \) & \( z_{3} \) \\ \hline\( \sum_{n=1}^{\infty} \frac{(z+1-2 i)^{n}}{2^{n}(n+1) \ln ^{2}(n+1)} \) & 0 & \( 1+2 i \) & -1 \\ \hline \end{tabular}

10.8.1 Series with complex terms

5.08 $

Problem: Find all expansions of the given function \( f(z) \) in powers of \( z-a \) and indicate the domains of these expansions. Remark 1. For a multivalued function \( \sqrt[3]{z} \mathrm{p} \) we consider the branch, which that takes real values on the positive part of the real axis. Remark 2. For the multivalued function \( \arctan z \) we consider the branch that takes real values on the positive part of the real axis. In this case, there is a representation: \[ \begin{array}{l} \arctan z=\int_{0}^{z} \frac{d z}{1+z^{2}}=\frac{\pi}{2}+\int_{\infty}^{z} \frac{d z}{1+z^{2}} \\ f(z)=\frac{z-1}{\sqrt[3]{z^{3}-3 z^{2}+3 z}} \text { in powers of }(z-1) . \end{array} \]

10.8.2 Series with complex terms

3.81 $

Problem: Find all Laurent expansions in powers of \( z \). \[ \frac{3 z-4}{z^{3}-z^{2}-6 z} \text {. } \]

10.8.3 Series with complex terms

3.81 $

Problem: Let's find all Laurent expansions in powers of \( z-z_{0} \). \[ \frac{z+6}{z^{2}-4}, \quad z_{0}=1+2 i . \]

10.8.4 Series with complex terms

3.81 $

Problem: Expand \( f(z) \) into a Laurent series in a neighborhood of the point \( z_{0} \). \[ z^{2} \cos \frac{z}{z+2}, \quad z_{0}=-2 . \]

10.8.5 Series with complex terms

3.81 $

  • ‹
  • 1
  • 2
  • ...
  • 95
  • ...
  • 116
  • 117
  • ›

mathproblemsbank.net

Terms of use Privacy policy

© Copyright 2025, MathProblemsBank

Trustpilot
Order a solution
Order a solution to a problem?
Order a solution
Order a solution to a problem?
home.button.login