MathProblemsBank Math Problems Bank
  • Home
  • Forum
  • About Us
  • Contact Us
  • Login
  • Register
  • language
 MathProblemsBank banner

MathProblemsBank banner

Math Problems and solutions

Mathematics sections
  • Algebra
    • Vector Algebra
    • Determinant calculation
    • Permutation group
    • Matrix transformations
    • Linear transformations
    • Quadratic forms
    • Fields, Groups, Rings
    • Systems of algebraic equations
    • Linear spaces
    • Polynomials
    • Tensor calculus
    • Vector analysis
  • Analytic geometry
    • Curves of the 2-nd order
    • Surfaces of the 2-nd order
    • Lines on a plane
    • Line and plane in space
    • Tangents and normals
  • Complex analysis
    • Operations with complex numbers
    • Singular points and residues
    • Integral of a complex variable
    • Laplace transform
    • Conformal mappings
    • Analytic functions
    • Series with complex terms
    • Calculating integrals of a real variable using residues
  • Differential equations
    • Ordinary differential equations
      • First order differential equations
      • Second order differential equations
      • Higher order differential equations
      • Geometric and physical applications
    • Systems of ordinary differential equations
    • Stability
      • Stability of the equations
      • Stability of the systems of equations
    • Operating method
      • Differential equations
      • Systems of differential equations
  • Differential geometry
  • Discret mathematics
    • Boolean algebra
    • Set theory
    • Combinatorics
    • Graph theory
    • Binary relations
    • Propositional algebra
      • Propositional calculus
      • Sequent calculus
    • Predicate calculus
    • Theory of algorithms and formal languages
    • Automata theory
    • Recursive functions
  • Functional analysis
    • Metric spaces
      • Properties of metric spaces
      • Orthogonal systems
      • Convergence in metric spaces
    • Normed spaces
      • Properties of normed spaces
      • Convergence in normed spaces
    • Measure theory
      • Lebesgue measure and integration
      • Measurable functions and sets
      • Convergence (in measure, almost everywhere)
    • Compactness
    • Linear operators
    • Integral equations
    • Properties of sets
    • Generalized derivatives
    • Riemann-Stieltjes integral
  • Geometry
    • Planimetry
      • Transformations on the plane
      • Construction problems
      • Complex numbers in geometry
      • Various problems on the plane
      • Locus of points
    • Stereometry
      • Construction of sections
      • Various problems in the space
    • Affine transformations
  • Mathematical analysis
    • Gradient and directional derivative
    • Graphing functions using derivatives
    • Plotting functions
    • Fourier series
      • Trigonometric Fourier series
      • Fourier integral
    • Number series
    • Function extrema
    • Power series
    • Function properties
    • Derivatives and differentials
    • Functional sequences and series
    • Calculation of limits
    • Asymptotic analysis
  • Mathematical methods and models in economics
  • Mathematical physics
    • First order partial differential equations
    • Second order partial differential equations
      • d'Alembert method
      • Fourier method
      • With constant coefficients
      • With variable coefficients
      • Mixed problems
    • Convolution of functions
    • Nonlinear equations
    • Sturm-Liouville problem
    • Systems of equations in partial derivatives of the first order
  • Mathematical statistics
  • Numerical methods
    • Golden section search method
    • Least square method
    • Sweep method
    • Simple-Iteration method
    • Approximate calculation of integrals
    • Approximate solution of differential equations
    • Approximate numbers
    • Function Interpolation
    • Approximate solution of algebraic equations
  • Olympiad problems
    • Olympic geometry
    • Number theory
    • Olympic algebra
    • Various Olympiad problems
    • Inequalities
      • Algebraic
      • Geometric
    • Higher mathematics
  • Probability theory
    • One dimensional random variables and their characteristics
    • Theory of random processes
    • Markov chains
    • Queuing systems
    • Two-dimensional random variables and their characteristics
    • Definition and properties of probability
    • Limit theorems
  • Real integrals
    • Integrals of functions of a single variable
      • Indefinite integrals
      • Definite Integrals
      • Improper integrals
    • Double integrals
    • Triple integrals
    • The area of a region
    • Volume of a solid
    • Volume of a solid of revolution
    • Flux of the vector field
    • Surface integrals
    • Curvilinear integrals
    • Potential and solenoidal fields
    • Vector field circulation
    • Integrals depending on a parameter
  • Topology
  • USE problems
  • Variational calculus
Problem list Free problems

Attention! If a subsection is selected, then the search will be performed in it!

Problem: To obtain the canonical form of the hypersurface given by the equation \( 2 x_{1} x_{2}+2 x_{2}+x_{3}+1=0 \), it's necessary to move the origin of coordinates to the point \( (a, b, c) \), where \( a++b+c=\cdots \).

5.1.6 Affine transformations

2.54 $

Problem: Find the square of the distance from the point \( A(1,0,1,3) \) to the plane \( P: x_{1}+x_{2}+x_{3}+2 x_{4}=7 \).

5.1.7 Affine transformations

1.27 $

Problem: Find the square of the distance from the point \( A= \) \( (1,0,0,1) \) to the plane given by the system of equations \[ x_{1}-x_{2}-x_{3}+x_{4}=0,2 x_{1}+x_{2}-x_{3}+x_{4}=1 \text {. } \]

5.1.8 Affine transformations

3.05 $

Problem: Find the square of the distance from the point \( A= \) \( (2,0,1,2) \) to the plane \[ P:\left(\begin{array}{l} x_{1} \\ x_{2} \\ x_{3} \\ x_{4} \end{array}\right)=\left(\begin{array}{l} 1 \\ 1 \\ 2 \\ 2 \end{array}\right)+t_{1}\left(\begin{array}{l} 1 \\ 0 \\ 0 \\ 1 \end{array}\right)+t_{2}\left(\begin{array}{l} 0 \\ 1 \\ 0 \\ 1 \end{array}\right)+t_{3}\left(\begin{array}{l} 0 \\ 0 \\ 1 \\ 1 \end{array}\right) . \]

5.1.9 Affine transformations

3.05 $

Problem: Find admissible extremals in the problem with free endpoints: \[ \begin{array}{l} F(x)=\int_{0}^{1}\left(\dot{x}^{2}+4 x^{2}\right) d t \rightarrow \text { extr }, \\ x(1)=\frac{e^{2}+e^{-2}}{2} . \end{array} \]

4.4 Variational calculus

2.54 $

Problem: Find the strong extrema of the functional: \[ \begin{array}{l} F(x)=\int_{0}^{1}\left(\dot{x}^{2}-x^{2}\right) d t \rightarrow \text { extr }, x(0)=1, \\ x(1)=\cos 1 . \end{array} \]

4.5 Variational calculus

3.81 $

Problem: Find the strong extrema of the functional: \[ \begin{array}{l} F(x)=\int_{4}^{-2}\left(\dot{x}^{2}+4 x^{2}\right) d t \rightarrow \text { extr }, \\ x(-4)=16, \quad x(-2)=4 . \end{array} \]

4.6 Variational calculus

3.81 $

Problem: Let \( M=C[a ; b]- \) be the set of all continuous functions \( y(x) \), given on the interval \( [a ; b] \). Given functional \( I[y(x)]=\pi \int_{a}^{b} y^{2}(x) d x \). Select three different functions that belong to \( C[a ; b] \), and obtain the corresponding values of \( I[y(x)] \), by taking specific \( \mathrm{a} \) and \( \mathrm{b} \).

4.7 Variational calculus

1.27 $

Problem: Let \( M=C[-1 ; 1] \) - the class of the functions \( y(x) \), continuous on segment \( [1 ; 1] \). Given functional \( I[y(x)]=\int_{-1}^{1} \varphi(x, y) d x \), where \( \varphi(x, y) \) - is the function, defined and continuous for all \( x \in[-1 ; 1] \) and real \( y \). For the given function \( \varphi(x, y) \) select couple of functions \( y(x) \) and find the corresponding values of the functional. \[ \varphi=\frac{x}{2-y^{2}} \text {. } \]

4.8 Variational calculus

1.27 $

Problem: Let \( M=C_{1}[3 ; 5] \) - the class of the functions \( y(x) \), having a continuous derivative on the interval [3;5], and let \( I[y(x)]=\left(y^{\prime}\left(x_{0}\right)\right)^{3}+y^{3}\left(x_{0}\right) \), where \( x_{0} \in[3 ; 5] \). Select couple of functions \( y(x) \) and a point \( x_{0} \in[3 ; 5] \); then find the value of the functional for the taken function and point.

4.9 Variational calculus

0.76 $

Problem: Find the distance between the curves on the specified segment: \[ f(x)=e^{-x^{2}}, \quad f_{1}(x)=0, \quad[-1,2] . \]

4.10 Variational calculus

0.76 $

Problem: For the functional find the variation in the corresponding spaces in the sense of the second definition. \[ I[y(x)]=\int_{a}^{b}\left(x y+y^{\prime 2}\right) d x \]

4.11 Variational calculus

1.78 $

Problem: Find the extremals of the functional: \[ \begin{array}{l} I[y(x)]=\int_{-1}^{1} \sqrt{y\left(1+y^{2}\right)} d x, \\ y(0)=\frac{1}{\sqrt{2}}, \quad y(1)=\frac{1}{\sqrt{2}} . \end{array} \]

4.12 Variational calculus

4.32 $

Problem: Check the validity of the Jacobi condition: \[ \begin{array}{l} I[y(x)]=\int_{0}^{a}\left(y^{2}-y^{2}\right) d x, \quad a>0, \\ a \neq \pi k, \quad y(0)=0, \quad y(a)=0 \end{array} \]

4.13 Variational calculus

4.32 $

Problem: Investigate the functional to an extremum. \[ \begin{array}{l} I[y(x)]=\int_{0}^{\frac{1}{2}}\left(2 y y^{\prime}+y^{\prime 2}-16 y^{2}\right) d x, \\ y(0)=0, \quad y\left(\frac{1}{2}\right)=0 . \end{array} \]

4.14 Variational calculus

3.05 $

  • ‹
  • 1
  • 2
  • ...
  • 16
  • ...
  • 116
  • 117
  • ›

mathproblemsbank.net

Terms of use Privacy policy

© Copyright 2025, MathProblemsBank

Trustpilot
Order a solution
Order a solution to a problem?
Order a solution
Order a solution to a problem?
home.button.login