MathProblemsBank Math Problems Bank
  • Home
  • Forum
  • About Us
  • Contact Us
  • Login
  • Register
  • language
 MathProblemsBank banner

MathProblemsBank banner

Math Problems and solutions

Mathematics sections
  • Algebra
    • Vector Algebra
    • Determinant calculation
    • Permutation group
    • Matrix transformations
    • Linear transformations
    • Quadratic forms
    • Fields, Groups, Rings
    • Systems of algebraic equations
    • Linear spaces
    • Polynomials
    • Tensor calculus
    • Vector analysis
  • Analytic geometry
    • Curves of the 2-nd order
    • Surfaces of the 2-nd order
    • Lines on a plane
    • Line and plane in space
    • Tangents and normals
  • Complex analysis
    • Operations with complex numbers
    • Singular points and residues
    • Integral of a complex variable
    • Laplace transform
    • Conformal mappings
    • Analytic functions
    • Series with complex terms
    • Calculating integrals of a real variable using residues
  • Differential equations
    • Ordinary differential equations
      • First order differential equations
      • Second order differential equations
      • Higher order differential equations
      • Geometric and physical applications
    • Systems of ordinary differential equations
    • Stability
      • Stability of the equations
      • Stability of the systems of equations
    • Operating method
      • Differential equations
      • Systems of differential equations
  • Differential geometry
  • Discret mathematics
    • Boolean algebra
    • Set theory
    • Combinatorics
    • Graph theory
    • Binary relations
    • Propositional algebra
      • Propositional calculus
      • Sequent calculus
    • Predicate calculus
    • Theory of algorithms and formal languages
    • Automata theory
    • Recursive functions
  • Functional analysis
    • Metric spaces
      • Properties of metric spaces
      • Orthogonal systems
      • Convergence in metric spaces
    • Normed spaces
      • Properties of normed spaces
      • Convergence in normed spaces
    • Measure theory
      • Lebesgue measure and integration
      • Measurable functions and sets
      • Convergence (in measure, almost everywhere)
    • Compactness
    • Linear operators
    • Integral equations
    • Properties of sets
    • Generalized derivatives
    • Riemann-Stieltjes integral
  • Geometry
    • Planimetry
      • Transformations on the plane
      • Construction problems
      • Complex numbers in geometry
      • Various problems on the plane
      • Locus of points
    • Stereometry
      • Construction of sections
      • Various problems in the space
    • Affine transformations
  • Mathematical analysis
    • Gradient and directional derivative
    • Graphing functions using derivatives
    • Plotting functions
    • Fourier series
      • Trigonometric Fourier series
      • Fourier integral
    • Number series
    • Function extrema
    • Power series
    • Function properties
    • Derivatives and differentials
    • Functional sequences and series
    • Calculation of limits
    • Asymptotic analysis
  • Mathematical methods and models in economics
  • Mathematical physics
    • First order partial differential equations
    • Second order partial differential equations
      • d'Alembert method
      • Fourier method
      • With constant coefficients
      • With variable coefficients
      • Mixed problems
    • Convolution of functions
    • Nonlinear equations
    • Sturm-Liouville problem
    • Systems of equations in partial derivatives of the first order
  • Mathematical statistics
  • Numerical methods
    • Golden section search method
    • Least square method
    • Sweep method
    • Simple-Iteration method
    • Approximate calculation of integrals
    • Approximate solution of differential equations
    • Approximate numbers
    • Function Interpolation
    • Approximate solution of algebraic equations
  • Olympiad problems
    • Olympic geometry
    • Number theory
    • Olympic algebra
    • Various Olympiad problems
    • Inequalities
      • Algebraic
      • Geometric
    • Higher mathematics
  • Probability theory
    • One dimensional random variables and their characteristics
    • Theory of random processes
    • Markov chains
    • Queuing systems
    • Two-dimensional random variables and their characteristics
    • Definition and properties of probability
    • Limit theorems
  • Real integrals
    • Integrals of functions of a single variable
      • Indefinite integrals
      • Definite Integrals
      • Improper integrals
    • Double integrals
    • Triple integrals
    • The area of a region
    • Volume of a solid
    • Volume of a solid of revolution
    • Flux of the vector field
    • Surface integrals
    • Curvilinear integrals
    • Potential and solenoidal fields
    • Vector field circulation
    • Integrals depending on a parameter
  • Topology
  • USE problems
  • Variational calculus
Problem list Free problems

Attention! If a subsection is selected, then the search will be performed in it!

Problem: A random process \( Y(t)=a+X t \) is given, where \( X \) is a random variable: \( f(x) \sim N[2 ; 2] \). Find: \( M[Y(t)], K_{Y}\left(t_{1}, t_{2}\right), D[Y(t)] \), draw a family of trajectories of \( Y(t)=a+X t \).

15.1.10 Theory of random processes

3.05 $

Problem: A random process \( Y(t)=a t+X \) is given, where \( X \) is a random variable: \( f(x) \sim R[-2 ; 2] \). Find: \( \quad M[Y(t)], K_{Y}\left(t_{1}, t_{2}\right), D[Y(t)] \), draw the family of trajectories of \( Y(t)=a+X t \).

15.1.11 Theory of random processes

3.81 $

Problem: The random process \( X(t), t \geq 0 \), is defined by the formula \( X(t)=\alpha \cos (t+\beta)+\varepsilon \), where \( \alpha, \beta, \varepsilon- \) are independent random variables, moreover, \( \alpha \sim N(0,1), \varepsilon \sim N\left(0, \sigma^{2}\right), \beta \sim U[-\pi, \pi] \). Find: \( P\left(X\left(t_{1}\right) \leq X\left(t_{2}\right) \mid \alpha \geq 0\right) \), where \( 0 \leq t_{1} \leq t_{1} \leq \frac{\pi}{2} \).

15.1.12 Theory of random processes

3.81 $

Problem: The random process \( X(t), t \geq 0 \), is defined by the formula \( X(t)=\alpha \cos (t+\beta)+\varepsilon \), where \( \alpha, \beta, \varepsilon \) are independent random variables, moreover \( \alpha \sim N(0,1), \varepsilon \sim N\left(0, \sigma^{2}\right), \beta \sim U[-\pi, \pi] \). Is the process \( X(t), t \geq 0 \) stationary in broad sense?

15.1.13 Theory of random processes

6.36 $

Problem: A random process \( \xi(t)= \) const, \( n-1 \leq t \leq n \), \( \forall n \in \mathbb{N} \) is given. The values of \( \xi(t) \) when \( t \in(n, n+1] \) and \( t \in(m, m+1] \) are independent random variables \( (n \neq m) \), with a probability density \[ P(x)=\frac{|x|^{\lambda}}{2 \Gamma(x+1)} e^{-|x|} . \]

15.1.14 Theory of random processes

6.36 $

Problem: Find the expected value, correlation function and the variance of the random function \( X(t)=X_{1} \cdot e^{2 t}-X_{2} \cdot \cos 5 t+3 t^{2}-1 \), where \( X_{1} \) and \( X_{2} \) are uncorrelated random variables with characteristics: \( m_{X_{1}}=0,2, m_{X_{2}}=0,3, D_{X_{1}}=0,01 \), \( D_{X_{1}}=0,04 \).

15.1.15 Theory of random processes

3.81 $

Problem: The random function \( X(t) \) has the characteristics \( m_{X_{t}}=\cos 3 t+t^{4}-2 t+4, K_{X}\left(t_{1}, t_{2}\right)=4 \cdot e^{6\left(t_{1}^{2}+t_{2}^{2}\right)} \). Find the expected value, the correlation function and the dispersion of the random function \( Y(t)=\sin 3 t \cdot X^{\prime}(t)+5 t^{2} X(t)+t^{3}+1 \).

15.1.16 Theory of random processes

5.09 $

Problem: Find the expected value, correlation function and the dispersion of the random process \( Z(t)=t^{2} \cdot X(t)++Y^{\prime}(t) \), if the random processes \( X(t) \) and \( Y(t) \) are uncorrelated, with the characteristics: \[ \begin{array}{l} m_{X}(t)=\sin 7 t, \quad m_{Y}(t)=4 t^{3}-5 t^{2}, \\ K_{Y}\left(t_{1}, t_{2}\right)=t_{1}^{3} \cdot t_{2}^{3} \cdot e^{2\left(t_{1}^{2}+t_{2}{ }^{2}\right)} . \end{array} \]

15.1.17 Theory of random processes

5.09 $

Problem: The random function \( X(t) \) is given by the canonical expansion \( X(t)=U\left(t^{3}+e^{t}\right)+ \) \( +V \cos t+t^{3} \), where \( D_{U}=0,1, D_{V}=0,6 \). Find the characteristics \( m_{Y}(t), K_{Y}\left(t_{1}, t_{2}\right), D_{Y}(t) \), if \[ Y(t)=\int_{0}^{t} \tau^{3} \cdot X(\tau) d \tau+\sin t \cdot X(t)+t^{4}-2 \]

15.1.18 Theory of random processes

6.36 $

Problem: Find the expected values, correlation function and the dispersion of the random process \( X(t)=X \cdot \cos 5 t+X \cdot e^{-t^{2}}-1 \) where \( X \) is a random variable with the characteristics \( m_{X}=4,5, D_{X}=0,2 \).

15.1.19 Theory of random processes

3.05 $

Problem: The random function \( X(t) \) is given by the canonical expansion \( X(t)=U \cdot e^{-t}+V \sin t+4 W \), where \( D_{U}=1, D_{V}=2, D_{W}=0,7 \). Find the characteristics of the random function \( Y(t): m_{Y}(t), K_{Y}\left(t_{1}, t_{2}\right), D_{Y}(t) \), where \[ Y(t)=2 X(t)+3 \int_{0}^{t} \tau X(\tau) d \tau \text {. } \]

15.1.20 Theory of random processes

6.36 $

Problem: The random function \( X(t) \) has the characteristics \( m_{X}(t)=t^{5}+t \sin 2 t+2, K_{X}\left(t_{1}, t_{2}\right)=4 e^{-2\left(t_{1}-t_{2}\right)^{2}} \). Find the expected value, correlation function and the dispersion of the random process \( Y(t)=\cos t \cdot X(t)+3 t \cdot X^{\prime}(t)+4 t \).

15.1.21 Theory of random processes

5.09 $

Problem: The random function \( X(t) \) is given by a canonical expansion \( X(t)=4 t^{2}+2 t-1+X_{1} \). \( \cdot(t-\sin 3 t)+X_{2} \cdot\left(t^{2}+e^{t}\right), \quad \) where \( \quad D_{X_{1}}=0,3 \), \( D_{X_{2}}=0,2 \). Find the characteristics \( m_{Y}(t) \), \( K_{Y}\left(t_{1}, t_{2}\right), D_{Y}(t) \), if \[ Y(t)=6 \cdot \int_{0}^{t} \tau \cdot X(\tau) d \tau+2 e^{-t} \cdot X(t)+\sin 4 t+2 t . \]

15.1.22 Theory of random processes

6.36 $

Problem: The improper motion is given by \[ X^{\prime}=\frac{1}{3}\left(\begin{array}{ccc} 2 & 2 & -1 \\ 2 & -1 & 2 \\ -1 & 2 & 2 \end{array}\right) X+\left(\begin{array}{l} 4 \\ 0 \\ 2 \end{array}\right) \] It is a composition of symmetry with respect to the plane \( 2 x_{1}-4 x_{2}+a x_{3}=6 \) and parallel translation, moreover \( a=\cdots \).

5.1.4 Affine transformations

3.81 $

Problem: To obtain the canonical form of the hypersurface given by the equation \( 2 x_{1} x_{2}+x_{2}-x_{3}=0 \), it's necessary to move the origin of the coordinates to the point \( (a, b, c) \), where \( 2(a+b+c)=\cdots \).

5.1.5 Affine transformations

2.54 $

  • ‹
  • 1
  • 2
  • ...
  • 15
  • ...
  • 116
  • 117
  • ›

mathproblemsbank.net

Terms of use Privacy policy

© Copyright 2025, MathProblemsBank

Trustpilot
Order a solution
Order a solution to a problem?
Order a solution
Order a solution to a problem?
home.button.login