MathProblemsBank Math Problems Bank
  • Home
  • Forum
  • About Us
  • Contact Us
  • Login
  • Register
  • language
 MathProblemsBank banner

MathProblemsBank banner

Math Problems and solutions

Mathematics sections
  • Algebra
    • Vector Algebra
    • Determinant calculation
    • Permutation group
    • Matrix transformations
    • Linear transformations
    • Quadratic forms
    • Fields, Groups, Rings
    • Systems of algebraic equations
    • Linear spaces
    • Polynomials
    • Tensor calculus
    • Vector analysis
  • Analytic geometry
    • Curves of the 2-nd order
    • Surfaces of the 2-nd order
    • Lines on a plane
    • Line and plane in space
    • Tangents and normals
  • Complex analysis
    • Operations with complex numbers
    • Singular points and residues
    • Integral of a complex variable
    • Laplace transform
    • Conformal mappings
    • Analytic functions
    • Series with complex terms
    • Calculating integrals of a real variable using residues
  • Differential equations
    • Ordinary differential equations
      • First order differential equations
      • Second order differential equations
      • Higher order differential equations
      • Geometric and physical applications
    • Systems of ordinary differential equations
    • Stability
      • Stability of the equations
      • Stability of the systems of equations
    • Operating method
      • Differential equations
      • Systems of differential equations
  • Differential geometry
  • Discret mathematics
    • Boolean algebra
    • Set theory
    • Combinatorics
    • Graph theory
    • Binary relations
    • Propositional algebra
      • Propositional calculus
      • Sequent calculus
    • Predicate calculus
    • Theory of algorithms and formal languages
    • Automata theory
    • Recursive functions
  • Functional analysis
    • Metric spaces
      • Properties of metric spaces
      • Orthogonal systems
      • Convergence in metric spaces
    • Normed spaces
      • Properties of normed spaces
      • Convergence in normed spaces
    • Measure theory
      • Lebesgue measure and integration
      • Measurable functions and sets
      • Convergence (in measure, almost everywhere)
    • Compactness
    • Linear operators
    • Integral equations
    • Properties of sets
    • Generalized derivatives
    • Riemann-Stieltjes integral
  • Geometry
    • Planimetry
      • Transformations on the plane
      • Construction problems
      • Complex numbers in geometry
      • Various problems on the plane
      • Locus of points
    • Stereometry
      • Construction of sections
      • Various problems in the space
    • Affine transformations
  • Mathematical analysis
    • Gradient and directional derivative
    • Graphing functions using derivatives
    • Plotting functions
    • Fourier series
      • Trigonometric Fourier series
      • Fourier integral
    • Number series
    • Function extrema
    • Power series
    • Function properties
    • Derivatives and differentials
    • Functional sequences and series
    • Calculation of limits
    • Asymptotic analysis
  • Mathematical methods and models in economics
  • Mathematical physics
    • First order partial differential equations
    • Second order partial differential equations
      • d'Alembert method
      • Fourier method
      • With constant coefficients
      • With variable coefficients
      • Mixed problems
    • Convolution of functions
    • Nonlinear equations
    • Sturm-Liouville problem
    • Systems of equations in partial derivatives of the first order
  • Mathematical statistics
  • Numerical methods
    • Golden section search method
    • Least square method
    • Sweep method
    • Simple-Iteration method
    • Approximate calculation of integrals
    • Approximate solution of differential equations
    • Approximate numbers
    • Function Interpolation
    • Approximate solution of algebraic equations
  • Olympiad problems
    • Olympic geometry
    • Number theory
    • Olympic algebra
    • Various Olympiad problems
    • Inequalities
      • Algebraic
      • Geometric
    • Higher mathematics
  • Probability theory
    • One dimensional random variables and their characteristics
    • Theory of random processes
    • Markov chains
    • Queuing systems
    • Two-dimensional random variables and their characteristics
    • Definition and properties of probability
    • Limit theorems
  • Real integrals
    • Integrals of functions of a single variable
      • Indefinite integrals
      • Definite Integrals
      • Improper integrals
    • Double integrals
    • Triple integrals
    • The area of a region
    • Volume of a solid
    • Volume of a solid of revolution
    • Flux of the vector field
    • Surface integrals
    • Curvilinear integrals
    • Potential and solenoidal fields
    • Vector field circulation
    • Integrals depending on a parameter
  • Topology
  • USE problems
  • Variational calculus
Problem list Free problems

Attention! If a subsection is selected, then the search will be performed in it!

Problem: Function \( z=z(x, y) \), point \( A\left(x_{0} ; y_{0}\right) \) and vector \( \vec{a} \) are given. It is required to find at point \( A \) : a) the gradient of the function and its value, b) the derivative of \( z \) in the direction of vector \( \vec{a} \). \[ z(x, y)=\ln (5 x+3 y), \quad A(2 ; 2), \quad \vec{a}=\{2 ;-3\} . \]

2.3.6 Gradient and directional derivative

1.27 $

Problem: Function \( z=z(x, y) \), point \( A\left(x_{0} ; y_{0}\right) \) and vector \( \vec{a} \) are given. It is required to find at point \( A \) : a) the gradient of the function and its value, b) the derivative of \( z \) in the direction of vector \( \vec{a} \). \[ z(x, y)=2 x^{3} y+3 x^{2} y^{2}, A(1 ;-2), \vec{a}=\{6 ;-8\} . \]

2.3.7 Gradient and directional derivative

1.27 $

Problem: Function \( z=z(x, y) \), point \( A\left(x_{0} ; y_{0}\right) \) and vector \( \vec{a} \) are given. It is required to find at point \( A \) : a) the gradient of the function and its value, b) the derivative of \( z \) in the direction of vector \( \vec{a} \). \[ z(x, y)=\sin ^{-1} \frac{x}{x+y}, \quad A(5 ; 5), \quad \vec{a}=\{-12 ; 5\} . \]

2.3.8 Gradient and directional derivative

1.27 $

Problem: Function \( z=z(x, y) \), point \( A\left(x_{0} ; y_{0}\right) \) and vector \( \vec{a} \) are given. It is required to find at point \( A \) : a) the gradient of the function and its value, b) the derivative of \( z \) in the direction of vector \( \vec{a} \). \[ z(x, y)=\frac{x+y}{x^{2}+y^{2}}, \quad A(1 ;-2), \quad \vec{a}=\{1 ;-2\} . \]

2.3.9 Gradient and directional derivative

1.27 $

Problem: Function \( z=z(x, y) \), point \( A\left(x_{0} ; y_{0}\right) \) and vector \( \vec{a} \) are given . It is required to find at point \( A \) : a) the gradient of the function and its value. b) the derivative of \( z \) in the direction of vector \( \vec{a} \). \[ z(x, y)=2 x^{4}+8 x^{2} y^{3}, A(2 ;-1), \quad \vec{a}=\{1 ;-3\} . \]

2.3.10 Gradient and directional derivative

1.27 $

Problem: Function \( z=z(x, y) \), point \( A\left(x_{0} ; y_{0}\right) \) and vector \( \vec{a} \) are given . It is required to find at point \( A \) : a) the gradient of the function and its value, b) the derivative of \( z \) in the direction of vector \( \vec{a} \). \[ z(x, y)=2 x^{2}+3 x y+4 y^{2}, A(2 ;-2), \quad \vec{a}=\{1 ; 3\} . \]

2.3.11 Gradient and directional derivative

1.27 $

Problem: Function \( z=z(x, y) \), point \( A\left(x_{0} ; y_{0}\right) \) and vector \( \vec{a} \) are given . It is required to find at point \( A \) : a) the gradient of the function and its value, b) the derivative of \( z \) in the direction of vector \( \vec{a} \). \[ z(x, y)=\tan ^{-1} \frac{y}{x}, \quad A(-1 ; 1), \quad \vec{a}=\{-1 ;-1\} . \]

2.3.12 Gradient and directional derivative

1.27 $

Problem: Function \( z=z(x, y) \), point \( A\left(x_{0} ; y_{0}\right) \) and vector \( \vec{a} \) are given. It's required to find at point \( A \) : a) the gradient of the function and its value, b) the derivative of \( z \) in the direction of vector \( \vec{a} \). \[ z(x, y)=\sqrt{x^{2}+y^{2}}, \quad A(3 ; 4), \quad \vec{a}=\{4 ;-3\} . \]

2.3.13 Gradient and directional derivative

1.27 $

Problem: Function \( z=z(x, y) \), point \( A\left(x_{0} ; y_{0}\right) \) and vector \( \vec{a} \) are given. It is required to find at point \( A \) : a) the gradient of the function and its value, b) the derivative of \( z \) in the direction of vector \( \vec{a} \). \[ z(x, y)=\tan ^{-1} \frac{y}{x}, \quad A(1 ; 3), \quad \vec{a}=\{3 ; 4\} . \]

2.3.14 Gradient and directional derivative

1.27 $

Problem: Function \( z=z(x, y) \), point \( A\left(x_{0} ; y_{0}\right) \) and vector \( \vec{a} \) are given. It is required to find at point \( A \) : a) the gradient of the function and its value, b) the derivative of \( z \) in the direction of vector \( \vec{a} \). \[ z(x, y)=x^{2}-x y+y^{2}, \quad A(2 ; 2), \quad \vec{a}=\{6 ; 8\} . \]

2.3.15 Gradient and directional derivative

1.27 $

Problem: Function \( z=z(x, y) \), point \( A\left(x_{0} ; y_{0}\right) \) and vector \( \vec{a} \) are given. It is required to find a point \( A \) : a) the gradient of the function and its value, b) the derivative of \( z \) in the direction of vector \( \vec{a} \). \[ z(x, y)=x^{2}-y^{2}, \quad A(1 ; 1), \quad \vec{a}=\{2 ; 2\} . \]

2.3.16 Gradient and directional derivative

1.27 $

Problem: Function \( z=z(x, y) \), point \( A\left(x_{0} ; y_{0}\right) \) and vector \( \vec{a} \) are given. It is required to finc at point \( A \) : a) the gradient of the function and its value, b) the derivative of \( z \) in the direction of vector \( \vec{a} \). \[ z(x, y)=\ln \left(x^{2}+y^{2}\right), \quad A(3 ; 4), \quad \vec{a}=\{2 ;-1\} . \]

2.3.17 Gradient and directional derivative

1.27 $

Problem: Calculate the derivative of function \( f(x, y)=x^{3}+2 x^{2} y+2 \) at point \( A(2 ; 2) \quad \) in the direction of vector \( \overrightarrow{A B} \), where \( B=(4 ; 2) \).

2.3.18 Gradient and directional derivative

0.76 $

Problem: Calculate the gradient of function \( z=x y \cos x y \) at point \( M(0 ;-3) \).

2.3.19 Gradient and directional derivative

0 $

Problem: Find the gradient of function \[ f(x, y, z)=\frac{x^{2}+2 y}{2 y+z} \text { at point } A=(2 ; 4 ; 2) \text {. } \]

2.3.20 Gradient and directional derivative

0.76 $

  • ‹
  • 1
  • 2
  • ...
  • 6
  • ...
  • 116
  • 117
  • ›

mathproblemsbank.net

Terms of use Privacy policy

© Copyright 2025, MathProblemsBank

Trustpilot
Order a solution
Order a solution to a problem?
Order a solution
Order a solution to a problem?
home.button.login