MathProblemsBank Math Problems Bank
  • Home
  • Forum
  • About Us
  • Contact Us
  • Login
  • Register
  • language
 MathProblemsBank banner

MathProblemsBank banner

Math Problems and solutions

Mathematics sections
  • Algebra
    • Vector Algebra
    • Determinant calculation
    • Permutation group
    • Matrix transformations
    • Linear transformations
    • Quadratic forms
    • Fields, Groups, Rings
    • Systems of algebraic equations
    • Linear spaces
    • Polynomials
    • Tensor calculus
    • Vector analysis
  • Analytic geometry
    • Curves of the 2-nd order
    • Surfaces of the 2-nd order
    • Lines on a plane
    • Line and plane in space
    • Tangents and normals
  • Complex analysis
    • Operations with complex numbers
    • Singular points and residues
    • Integral of a complex variable
    • Laplace transform
    • Conformal mappings
    • Analytic functions
    • Series with complex terms
    • Calculating integrals of a real variable using residues
  • Differential equations
    • Ordinary differential equations
      • First order differential equations
      • Second order differential equations
      • Higher order differential equations
      • Geometric and physical applications
    • Systems of ordinary differential equations
    • Stability
      • Stability of the equations
      • Stability of the systems of equations
    • Operating method
      • Differential equations
      • Systems of differential equations
  • Differential geometry
  • Discret mathematics
    • Boolean algebra
    • Set theory
    • Combinatorics
    • Graph theory
    • Binary relations
    • Propositional algebra
      • Propositional calculus
      • Sequent calculus
    • Predicate calculus
    • Theory of algorithms and formal languages
    • Automata theory
    • Recursive functions
  • Functional analysis
    • Metric spaces
      • Properties of metric spaces
      • Orthogonal systems
      • Convergence in metric spaces
    • Normed spaces
      • Properties of normed spaces
      • Convergence in normed spaces
    • Measure theory
      • Lebesgue measure and integration
      • Measurable functions and sets
      • Convergence (in measure, almost everywhere)
    • Compactness
    • Linear operators
    • Integral equations
    • Properties of sets
    • Generalized derivatives
    • Riemann-Stieltjes integral
  • Geometry
    • Planimetry
      • Transformations on the plane
      • Construction problems
      • Complex numbers in geometry
      • Various problems on the plane
      • Locus of points
    • Stereometry
      • Construction of sections
      • Various problems in the space
    • Affine transformations
  • Mathematical analysis
    • Gradient and directional derivative
    • Graphing functions using derivatives
    • Plotting functions
    • Fourier series
      • Trigonometric Fourier series
      • Fourier integral
    • Number series
    • Function extrema
    • Power series
    • Function properties
    • Derivatives and differentials
    • Functional sequences and series
    • Calculation of limits
    • Asymptotic analysis
  • Mathematical methods and models in economics
  • Mathematical physics
    • First order partial differential equations
    • Second order partial differential equations
      • d'Alembert method
      • Fourier method
      • With constant coefficients
      • With variable coefficients
      • Mixed problems
    • Convolution of functions
    • Nonlinear equations
    • Sturm-Liouville problem
    • Systems of equations in partial derivatives of the first order
  • Mathematical statistics
  • Numerical methods
    • Golden section search method
    • Least square method
    • Sweep method
    • Simple-Iteration method
    • Approximate calculation of integrals
    • Approximate solution of differential equations
    • Approximate numbers
    • Function Interpolation
    • Approximate solution of algebraic equations
  • Olympiad problems
    • Olympic geometry
    • Number theory
    • Olympic algebra
    • Various Olympiad problems
    • Inequalities
      • Algebraic
      • Geometric
    • Higher mathematics
  • Probability theory
    • One dimensional random variables and their characteristics
    • Theory of random processes
    • Markov chains
    • Queuing systems
    • Two-dimensional random variables and their characteristics
    • Definition and properties of probability
    • Limit theorems
  • Real integrals
    • Integrals of functions of a single variable
      • Indefinite integrals
      • Definite Integrals
      • Improper integrals
    • Double integrals
    • Triple integrals
    • The area of a region
    • Volume of a solid
    • Volume of a solid of revolution
    • Flux of the vector field
    • Surface integrals
    • Curvilinear integrals
    • Potential and solenoidal fields
    • Vector field circulation
    • Integrals depending on a parameter
  • Topology
  • USE problems
  • Variational calculus
Problem list Free problems

Attention! If a subsection is selected, then the search will be performed in it!

Problem: Examine the function by methods of differential calculus and plot the graph: \[ f(x)=(x-1)^{2}(x+1)^{2} \text {. } \]

2.4.1 Graphing functions using derivatives

2.55 $

Problem: Find the Fourier image of function \( f(x) \), if \( f(x) \equiv 0 \) when \( x \notin\left[x_{1}, x_{4}\right] \), and when \( x \in\left[x_{1}, x_{4}\right] \) the graph of this function consists of links of a polygonal chain, passing through points \( A\left(x_{1}, y_{1}\right), B\left(x_{2}, y_{2}\right) \), \( C\left(x_{3}, y_{3}\right), D\left(x_{4}, y_{4}\right) \). The coordinates of the points are presented in the table: \begin{tabular}{|c|c|c|c|} \hline\( A \) & \( B \) & \( C \) & \( D \) \\ \hline\( (-2,-2) \) & \( (1,0) \) & \( (4,-2) \) & \( (6,-2) \) \\ \hline \end{tabular}

2.6.1.1 Fourier integral

5.1 $

Problem: Find the Fourier image of function \( f(x) \), if \( f(x) \equiv 0 \) when \( x \notin\left[x_{1}, x_{4}\right] \), and when \( x \in\left[x_{1}, x_{4}\right] \) the graph of this function consists of links of a polygonal chain, passing through points \( A\left(x_{1}, y_{1}\right), B\left(x_{2}, y_{2}\right) \), \( C\left(x_{3}, y_{3}\right), D\left(x_{4}, y_{4}\right) \). The coordinates of the points are presented in the table: \begin{tabular}{|c|c|c|c|} \hline\( A \) & \( B \) & \( C \) & \( D \) \\ \hline\( (-1,-1) \) & \( (0,-1) \) & \( (1,-2) \) & \( (2,-1) \) \\ \hline \end{tabular}

2.6.1.2 Fourier integral

5.1 $

Problem: Find the Fourier image of function \( f(x) \), if \( f(x) \equiv 0 \) when \( x \notin\left[x_{1}, x_{4}\right] \), and when \( x \in\left[x_{1}, x_{4}\right] \) the graph of this function consists of links of a polygonal chain, passing through points \( A\left(x_{1}, y_{1}\right), B\left(x_{2}, y_{2}\right) \), \( C\left(x_{3}, y_{3}\right), D\left(x_{4}, y_{4}\right) \). The coordinates of the points are presented in the table: \begin{tabular}{|c|c|c|c|} \hline\( A \) & \( B \) & \( C \) & \( D \) \\ \hline\( (0,-1) \) & \( (2,2) \) & \( (4,-1) \) & \( (5,-1) \) \\ \hline \end{tabular}

2.6.1.3 Fourier integral

5.1 $

Problem: Find the Fourier image \( F[f(x)](v) \) \( =\int_{-\infty}^{+\infty} f(t) e^{-i v t} d t \) of function \( f(t) \), using equalities \( F[ \) rect \( t](v)=\operatorname{sinc} \frac{v}{2} \) and \( F[\Lambda(t)](v)=\operatorname{sinc}^{2} \frac{v}{2} \). The graph of function \( f(t) \) consists a polygonal chain, connecting points \( A, B, C \) and \( D \), as well as from parts of the \( \mathrm{x} \)-axis (to the left of \( A \) and to the right of \( D \) ). \begin{tabular}{|c|c|c|c|} \hline\( A \) & \( B \) & \( C \) & \( D \) \\ \hline\( (-1,1) \) & \( (1,-2) \) & \( (4,-2) \) & \( (6,1) \) \\ \hline \end{tabular}

2.6.1.4 Fourier integral

5.1 $

Problem: Find the Fourier image of function \( f(x) \), if \( f(x) \equiv 0 \) when \( x \notin\left[x_{1}, x_{4}\right] \), and when \( x \in\left[x_{1}, x_{4}\right] \) the graph of this function consists of links of a polygonal chain, passing through points \( A\left(x_{1}, y_{1}\right), B\left(x_{2}, y_{2}\right) \), \( C\left(x_{3}, y_{3}\right), D\left(x_{4}, y_{4}\right) \). The coordinates of the points are presented in the table: \begin{tabular}{|c|c|c|c|} \hline\( A \) & \( B \) & \( C \) & \( D \) \\ \hline\( (-2 ;-1) \) & \( (-1 ;-1) \) & \( (0 ; 0) \) & \( (1 ;-1) \) \\ \hline \end{tabular}

2.6.1.5 Fourier integral

5.1 $

Problem: Expand function \( f(x)=\frac{x^{2}-1}{2} \) into a trigonometric Fourier series on the line segment \( [-\pi ; \pi] \). Plot the graphs of function \( f(x) \) and the sum of the Fourier series. Write down the first three partial sums of the Fourier series and approximately plot their graphs.

2.6.2.1 Trigonometric Fourier series

5.1 $

Problem: The periodic function is given: \[ f(x)=\left\{\begin{array}{ll} x, & 0 \leq x \leq 1 \\ 1, & 1

2.6.2.2 Trigonometric Fourier series

6.37 $

Problem: Expand function \( f(x) \) into a trigonometric Fourier series: \[ f(x)=\cos \alpha x, \quad-\pi

2.6.2.3 Trigonometric Fourier series

1.27 $

Problem: Expand functon \( f(x) \) into a trigonometric Fourier series: \[ f(x)=\left\{\begin{array}{cc} 0, & -6

2.6.2.4 Trigonometric Fourier series

2.55 $

Problem: Expand function \( f(x) \) in a Fourier series in the form of a superposition of simple harmonics, given on the segment line \( [-T / 2, T / 2] \). Plot the amplitude and phase spectra. The values of parameters \( T, h, p \) and \( q \) are given in the table: \begin{tabular}{|c|c|c|c|} \hline\( T \) & \( h \) & \( p \) & \( q \) \\ \hline 2 & 2 & -2 & 1 \\ \hline \end{tabular} \( f(x)=\left\{\begin{array}{cc}h-\frac{2 h}{T} x, & -T / 2 \leq x<0 \\ p, & 0 \leq x

2.6.2.5 Trigonometric Fourier series

5.1 $

Problem: Expand function \( f(x) \) in a Fourier series in the form of a superposition of simple harmonics, given on the segment line \( [-T / 2, T / 2] \). Plot: 1. Amplitude and phase spectra; 2. Graphs of partial sums of the Fourier series \( S_{3}(x), S_{10}(x), S_{20}(x), S_{100}(x) \). The values of parameters \( T, h, p \) and \( q \) are given in the table:

2.6.2.6 Trigonometric Fourier series

6.37 $

Problem: Expand function \( f(x) \) into Fourier series in the form of a superposition of simple harmonics, given on the segment line \( [-T / 2, T / 2] \). Plot: 1. Amplitude and phase spectra; 2. Graphs of partial sums of the Fourier series \( S_{3}(x), S_{10}(x), S_{20}(x), S_{100}(x) \). The values of parameters \( T, h, p \) and \( q \) are given in the table: \begin{tabular}{|c|c|c|c|} \hline\( T \) & \( h \) & \( p \) & \( q \) \\ \hline 2 & -2 & 2 & -1 \\ \hline & \( p \), & \begin{tabular}{l} \( / 2 \leq \) \\ \( -T / 4 \) \end{tabular} & \\ \hline & \( 2-\frac{2 l}{T} \) & & \\ \hline \end{tabular}

2.6.2.7 Trigonometric Fourier series

6.37 $

Problem: Expand function \( f(x) \) into the trigonometric Fourier series in cosines. 1) \( f(x)=x^{3} \) in \( [0 ; 1] \), 2) \( f(x)=\sin 2 x \) in \( [0 ; 1] \), 3) \( f(x)=\frac{\pi}{4}-\frac{x}{2} \) in \( [0 ; 1] \).

2.6.2.8 Trigonometric Fourier series

3.82 $

Problem: Calculate coefficient \( a_{3} \) in the expansion of function \( f(x) \) in the trigonometric Fourier series \[ f(x)=\left\{\begin{array}{lr} 0, & -2

2.6.2.9 Trigonometric Fourier series

0.51 $

  • ‹
  • 1
  • 2
  • ...
  • 7
  • ...
  • 116
  • 117
  • ›

mathproblemsbank.net

Terms of use Privacy policy

© Copyright 2025, MathProblemsBank

Trustpilot
Order a solution
Order a solution to a problem?
Order a solution
Order a solution to a problem?
home.button.login